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Figure 1: Image showing the basic concept of our algorithm. On the left, a VR headset illustrating the rendering of multiple
spheres is depicted. On the right, a depth image and the corresponding real image is shown.

ABSTRACT

Virtual Reality (VR) lives from the experience of diving into a
world which is perceived as a three-dimensional environment. Reg-
ular two-dimensional video materials captured in the real world are
only partially suitable to convey the real feeling of presence in VR.
This paper describes the design and implementation of a 3D effect
on a video in VR through the use of only a single monocular video
as input. This is realized through a monocular depth estimation
algorithm, which pre-processes the video and extracts depth infor-
mation, creating a corresponding depth map video. An application
running on a VR headset uses this depth map to create the 3D ef-
fect through projecting the video onto multiple spheres at different
sizes and distances from the viewer, depending on the correspond-
ing depth value. We describe the entire process and show a few
examples, analyzing the individual algorithmic steps.

Index Terms: Artificial Intelligence, Depth Estimation, Monocu-
lar Video, Virtual Reality

1 INTRODUCTION

Virtual Reality has gained more and more traction in recent years.
The main focus is often to simulate a fictional scene to dive into.
As technology evolved over time and the capture of high quality
images and videos of the real world is more accessible than ever,
the demand for photorealistic content for VR increases in popu-
larity. Through the introduction of affordable 360° cameras, the
market became saturated with surround images and videos with a
clear application to VR. The possibility of immersing yourself in
real places and situations as if you were actually present, or travel-
ing the world without ever leaving the room is incredible. But what
if we could improve on that to make it even more immersive and
realistic?

We, as humans, do not visually perceive our surrounding envi-
ronment through optical vision alone. Depth perception allows us
to experience the world around us as a three-dimensional space in-
stead of just a two-dimensional plane. This works through the use
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of our two eyes, which have enough difference in viewpoint to allow
our brain, with the help of contextual clues, to assess distance. Re-
visiting 360° video footage shot by a consumer camera, we quickly
realize that it is flat, similar to every other ordinary camera; the
only difference being that it is spherical instead of planar, which
allows us to look in different directions. When using a VR headset,
we can decide the content that each individual eye can see. There-
fore, using two separate images with a slightly different viewpoint
and using them for both the left and the right eyes, respectively, the
brain is tricked into thinking that it is seeing depth. However, we
do not have the information to properly separate viewpoints from
monocular images or videos.

Suppose we had depth information for 360° video footage.
Many applications would benefit, such as tourism, which relies
on experience-driven activities like hiking and scuba diving that
aim to evoke emotions. Advertising these is hard, as VR headsets
with 360° images often miss accurately conveying height sensa-
tions. Adding depth would create a more realistic experience and
attract more participants. The entertainment industry seeks to cap-
tivate through sight and sound, but traditional screens and 2D VR
lack depth perception. Enhanced 360° videos would improve ex-
periences, especially in dynamic activities like skiing. Moreover, it
would allow those with limited mobility to virtually explore hard-
to-reach places.

Creating effective video footage usually requires a deliberate
process each time an image or video is captured, making previous
images unsuitable for this effect. We present a method for apply-
ing depth enhancement easily to existing 360° images, enhancing
immersive content. Our system uses a monocular depth estimation
method [29] to derive depth from contextual clues, allowing us to
represent these values as actual depth in VR. Handling the large
amount of depth data in videos is challenging, so we explore dif-
ferent representation methods. Consequently, the depth effect func-
tions on a state-of-the-art VR headset with real-time processing,
excluding depth calculation.

The rest of the current document is structured as follows. In
Section 2 we revisit different related works in the area of depth
estimation and devices. Section 3 is dedicated to the description
of our algorithmic pipeline. In Section 4 we give details about the
practical implementation, while we show some experimental results
and analysis in Section 5. Finally, concluding remarks are given in
Section 6.
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2 RELATED WORK

Photography and video creation for information or entertainment is
widespread and familiar. Distance information i.e., indicating the
separation between two points, can be measured in the real world
or its 3D digital model. Depth abstracts this such that each pixel
is linked to a distance from the camera to a 3D point on an object
in reality or its digital model. Creating this depth information is
essential to enhance 2D video immersion to 3D in VR, which we
aim to address.

In the following, we first discuss representation methods, fol-
lowed by an investigation of ways to measure or estimate distances
and depth, respectively, which can serve as a supplement to pro-
cessing images. Although there is a huge body of literature, we
mainly focus on works related to 360° imagery and suitable captur-
ing devices, VR and the findings and shortcomings.

2.1 Environment Representation Methods
Wang [28] provides a review of different 3D representation meth-
ods. We discuss several models and also discuss 2D image-based
representation methods as follows.

Point Clouds and Meshes Point clouds are a general key
method for representing environments and are closely linked to
Light Detection and Ranging (LiDAR), as Leberl et al. [15] dis-
cusses. They depict objects through a set of points with each point
specified by three coordinates (x,y,z), and can include additional
data such as e.g., color to enhance visualization. Point clouds offer
raw 3D storage due to their high resolution and editing flexibility.

A deferred representation involves 3D meshes and rendering
techniques, as discussed e.g., by Kato et al. [10]. A 3D mesh, made
of vertices and edges, forms a texturable surface. It allows point re-
duction without creating surface holes, enhancing performance and
reducing file size. However, it requires additional computation for
mesh grid and reduction.

Ueda et al. [24] uses light-field imagery and proposes the use of
multiple planes at varying depths to simplify scene division. Brox-
ton et al. [4] show how this idea can be used for 360° imagery,
substituting planes with spheres of different radii.

Spherical Image Representation Capturing a 360-degree
video involves recording multiple videos from the same viewpoint
and focal length, with varying directions. This rotational combina-
tion creates a spherical or surround video feed. Since we cannot
look in all directions simultaneously, the video is often projected
onto a sphere’s interior, as per e.g., Liu et al. [17], enabling a camera
to select any view direction, thus offering an immersive experience.
Gkitsas et al. [6] present PanoDR, a system for Diminished Real-
ity (DR) using spherical imagery. Mühlhausen et al. [20] present
a learning-based system also using multi-sphere images to enable
full 6 degree-of-freedom (DoF) head motion.

A key issue is the absence of a distinct spherical video format
due to compatibility concerns. To create a planar video, spherical
recordings are projected onto a plane and can be reverted back using
inverse projection. Kennedy et al. [12] describes several methods
for spherical-to-planar transitions, with equirectangular projection
being the most common.

Image-based Rendering (IBR) Both Neural Rendering
Fields (NERFs) and Gaussian Splatting are novel view synthesis
methods, aiming to render scenes, typically captured in the real
world, entirely based on images. In a nutshell, a novel view is
generated from the content of a multitude of existing images of a
scene. An overview of the field is given by Shum and Kang [23],
while we abstain from a more in-depth review of this very active
field of research. Attal et al. [2] present MatryODShka for novel
view synthesis, which uses stereo 360° imagery and a multilayered
spherical representation. The exemplary work of Jiang et al. [9]
recently impressively demonstrated interactivity. It is important to

note that these methods are still hard to apply practically on con-
ventional headsets; scenes need to be captured from multiple view
points, preprocessing and rendering requires significant amounts of
computational and memory resources. However, IBR is considered
a key future method for reproducing photorealistic content in VR.

2.2 Estimation of Depth
The estimation of depth and distances is a broad field of research,
which has been boosted recently particularly through the develop-
ment of new hardware technologies and deep neural networks.

Lasers: A common approach to depth data collection is the use
of laser sensors. Most prominently, LiDAR can be used to obtain
the distance to certain points of a scene. This method is also used
by the possibly most famous 360° depiction of real places, Google
Street View, described by Anguelov et al. [1]. The majority of im-
ages and depth information captures for their database come from
a highly specialized and costly hardware setup containing a mul-
titude of cameras and laser sensors mounted on top of a moving
vehicle. The exact structure has changed over the years, but the
main concept has remained the same. A spherically arranged array
of cameras is periodically taking pictures of every possible direc-
tion. During driving, this results in a collection of pictures every
few meters, which are merged into a single spherical image. Kim et
al. [13] are using a similar setup to create a 360° dataset including
images and LiDAR scans. Arguably, laser-assisted 360° capturing
setups are costly and complicated to operate.

Stereo Matching: A more traditional, yet well established ap-
proach to gathering depth is stereo depth estimation [21, 7], more
recently also incorporating learning frameworks such as the work
of Martins et al. [18]. This method employs the differences among
several cameras placed at slightly varied angles to triangulate dis-
tances. However, using two 360° cameras instead of two conven-
tional cameras leads to the creation of a handful of new problems
caused by the 360° field of view, described by Matzen et al. [19].
Mutual obstruction or the varying strength of disparity between the
cameras depending on the viewing direction is a general problem,
which they overcome by creating a specialized construction: two
360° cameras with a fixed offset, constantly spinning both around
themselves and their common axis of rotation. This allows them
to successfully stereo match both video streams in order to gather
depth information. Broxton et al. [4] also describe a custom captur-
ing rig, which uses 46 individual cameras to create a 360° image,
including depth information through stereo matching.

Depth from Motion: To estimate depth using a single monoc-
ular camera, the camera must undergo some motion between suc-
cessive frames. The idea is to compare two of these frames and
analyze the change between them, which is conceptually similar to
stereo depth estimation, just without information about the relative
camera position, which makes it less accurate. One such method is
depth through optical flow paired with deep neural networks, pro-
posed by Wang et al. [27]. Although this works well for pinhole
cameras, the biggest limitation is created by the nature of 360° im-
agery. Depth information perpendicular to the moving direction can
be extracted properly, as there is usually enough baseline. However,
the computation of the optical flow in the moving direction often ex-
poses insufficient difference between frames to accurately compute
depth, thus the depth map lacks detail.

Depth from Context: More recently, the estimation of depth
from contextual clues with the help of deep neural networks has
become very popular. In such an approach, a model is trained on
both labeled and unlabeled datasets while finally being able to pre-
dict the depth from new, yet unseen, image data. Bhat et al. [3]
proposed ZoeDepth, which is considered the current state-of-the-
art in that field and is based on MiDAS, an earlier work by Ranftl et
al. [22]. Yang et al. [29] proposed Depth Anything, which follows
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a similar approach and provides an improvement with respect to the
metric depth values. Ke et al. [11] proposed Marigold, while Li et
al. [16] proposed Patchfusion, which are both capable of achiev-
ing more accurate results with the drawback of a large increase in
computation time.

2.3 Spherical Cameras and Scanners

Even professional 360° video equipment struggles to fulfill the re-
quirements for high framerates and resolutions in VR. A wide range
of different 360° cameras are available on the consumer market,
varying considerably in price and affordability. The most promi-
nent examples include the Insta360 X series, the Ricoh Theta, the
GoPro MAX and the Samsung Gear 360 class of devices. These
devices clearly target the consumer market for more conventional
360° image and video acquisition. While those cameras are compa-
rably cheap, the video resolution is restricted around the 2-4k range,
while frame rates are limited to 30-60fps at max.

More expensive devices dedicated to professional VR content
creation include the Insta360 Titan, the KanDao QooCam 8K or
the Teledyne Ladybug or Mosaic spherical cameras. Those devices
are hardly affordable; however, they can provide 8k video at proper
framerates up to 120fps and usually serve as capturing devices in
professional video broadcasting. This class of devices is also con-
sidered to provide adequate content for state-of-the-art professional
video replay in VR today.

3 DEPTH-ENHANCED 360° VIDEO FOR VR

The basic input to our approach is a single 360° video captured with
a monocular camera, in which we do not place any requirements
on the actual image resolution or frame rate. However, the higher
the resolution and frame rate of the input video, the better the final
experience in VR.

In Figure 2, a high-level overview of our approach is shown, sep-
arated into two basic stages, a video pre-processing pipeline and
live video replay. During pre-processing, we extract each individ-
ual frame from the video and estimate the depth using a monocular
depth estimation method. The depth map is encoded into a new
accompanying video. During playback, a set of differently sized
concentric spheres is created, which are assembled as the shells of
an onion. Thresholds on the calculated depth define a masking for
each individual sphere, giving the final multi-spherical representa-
tion. In the VR experience, the left and right eyes are rendered from
the inside of the sphere from two displaced cameras with different
viewports. Note that we postpone a discussion of the impact of in-
dividual parameters mentioned throughout the rest of this Section
until the discussion of our evaluation results in Section 5.

3.1 Depth from Video

At the core of our method lies a contextual deep learning approach
for the extraction of depth values, namely Depth Anything by Yang
et al. [29]. We built a framework around it to streamline the pro-
cessing of videos, which includes everything necessary to go from
an ordinary 360° video to a combined video consisting of the said
video and its respective depth map.

Frame Processing First, we extract each individual frame
from the input video to forward them to the depth estimation stage.

Depth Anything is not particularly designed to handle 360°
panoramic imagery. This creates certain problems, which originally
stem from the imagery used to train the deep learning model. Phys-
ical lens assemblies cause a brightness fall-off towards the borders
of an image, as described by Unger et al. [25]. In digital photogra-
phy, this effect is usually compensated for at least partially by dig-
ital amplification, and it is almost unnoticeable to the human eye.
Still, the depth estimation at the borders suffers from inaccuracies

exactly because of this effect, which is less harmful to pinhole cam-
era images. For 360° panoramas, this is an issue, as the panoramic
image indeed ”does not end” at the left and right borders.

Another problem comes from the basic nature of the deep learn-
ing framework itself. Because Depth Anything is a system estimat-
ing depth from visual clues, again, at the borders the amount of
information is limited. Although one would assume that the esti-
mated depth at the left and right borders of the image is almost the
same, i.e., the depth estimation function across the borders is con-
tinuous, this is actually not the case. We counteract both effects by
artificially enlarging the panoramic images at the borders. In Figure
3, the extension methodology is shown; overall, it is a plain copy of
a set of n pixel columns from left to right and vice versa.

Computing the Depth Map Based on the padded imagery, we
aim to calculate a depth map which should be consistent in the time
domain, as we are looking at videos, rather than single images. This
means that the depth values for individual pixels calculated for suc-
cessive frames should be similar, unless there is a sudden change
caused by a real depth discontinuity, such as e.g., the corner of a
building. In order to achieve this, we use a particular Depth Any-
thing model, which is trained to deliver metric depth values. This
contrasts to the default usage of the deep neural network that de-
livers relative depth values, i.e., values that are scaled between a
defined maximum and minimum value. Using metric values is es-
sential to retrieve depth values for individual pixels that are approx-
imately the same for successive frames, unless the pixel content
indeed changes drastically.

In addition to offering models trained on indoor and outdoor
scenes, Depth Anything can also be provided with a polling size
to scale computational demands and accuracy. In other words, it
is possible to provide a lower-resolution version of an image to the
algorithm rather than a full-resolution frame. A lower polling size
decreases computational demands but also decreases the accuracy
and resolution of the resulting depth array, the default outcome of
the algorithm, at the same time. Regardless of the polling size, the
array is adequately resized to fit the video aspect ratio, considering
a remaining aspect of the algorithm: the precision of the estimated
depth values. In order to store the resulting depth values efficiently
in image space, the depth values are converted into a simple 8-bit
format, ranging from 0, being closest to the camera, to 255 being
farthest from the camera. Note that at this point, we crop the same
number of n columns on both sides of the depth map to fit the orig-
inal video resolution, or the respective fraction of n columns, if the
polling size and resulting depth image are smaller than the original
frame size.

Two examples of a video frame and its corresponding depth map
are shown in Figure 4. Iterating over all frames of a video results
in a second set of corresponding grayscale frames encoding the re-
spective depth maps. These grayscale frames can be encoded again
into a video file using proper video encoding algorithms.

3.2 Recreating the Depth Effect in VR

To recreate the aimed depth effect in VR, a dedicated set-up of con-
centric spheres and proper algorithms for texturing these spheres
are required. We thereby assume that at the end, the observer in
VR is placed in the center of this multi-spherical setup, similar to
the default way of creating experiences based on 360° panoramic
videos in VR using a single surrounding spherical surface.

Spherical Representation In order to texture a single sphere
from an image or video frame, we use a proper UV mapping. We
convert the horizontal and vertical axes of the equirectangular video
frame (u,v) into the corresponding coordinates of the sphere’s sur-
face (x,y,z) by two formulas in Equations 1. Each individual point
on the surface of the sphere is given by a unit vector (dx,dy,dz) with
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Video pre-processing

Video
Video

Frames

Once per Frame

Frame Depth
Frame+Depth

Sphere CreationMulti Sphere Representation Masking

Replay

Replay

Figure 2: An overview of our approach. First, we extract each individual frame from the video and estimate a depth map. Both the frame and
the depth map are combined into a new video. During playback, masks based on depth thresholds are applied to differently sized concentric
spheres. Placing the left and right eye accordingly close to the center of the spheres gives the final experience.

Figure 3: Visualization of the border extension: The blue and yel-
low areas are symbolizing exactly which parts of the frame are
copied.

its origin at the center of the sphere.

u = 0.5+
arctan2(dz,dx)

2π
, v = 0.5+

arcsin(dy)

π
. (1)

However, a single sphere cannot convey any sort of depth infor-
mation even when scaling the sphere radius, except for varying the
amount of potential eye strain when viewed in VR, as studied by
Coles et al. [5].

Our setup uses multiple spheres at different distances, placing
different parts of a scene on their respective spheres based on the
depth, i.e., distance, estimate. Because we use two slightly off-
center cameras in VR, when focusing on a fixed point in a scene,
each eye creates an imaginary line called the visual axis. Together,
both lines form a vergence angle in between them. Depending on
the distance to the point, this angle also changes. The farther away
it is, the angle becomes more acute, as shown exemplarily on the
left of Figure 5 with angles α and β . Vergence is one of the aspects
that allow the human brain to estimate depth and distance.

The other big factor is the binocular disparity. It describes the
slight difference between the images captured by the eyes, created
by the horizontal offset of their viewpoints. This difference in-
creases the closer an object is to the observer and is measurable by
comparing the left- and right-eye view of a scene. As shown exem-
plarily on the right of Figure 5, the view is focused on a given point
F with an obstructing point O in the foreground. The binocular
disparity is measurable through the difference of the two resulting
angles, i.e., γ and δ , in between the line of sight of each eye. The
human brain also uses this dissimilarity in order to perceive depth.

Cars Forest

Figure 4: An example of how resulting frames would look like af-
ter the preprocessing is complete. (Cars) An urban scene showing
multiple cars and buildings. (Forest) A natural scene showing a
multitude of trees inside a montane forest.

The concentric spheres have radii that are linearly correlated to
the expected metric depth values of the imagery. In order to choose
the radii properly, both the vergence angle and the binocular dispar-
ity between the spheres should remain as small as possible, to avoid
increased eye strain and the creation of irritating pattern repetitions
at depth discontinuities. This essentially defines the strategy con-
ceptually: using as many and as closely spaced spheres as possible.

However, having as many spheres as depth levels is usually im-
practical for performance reasons, as also mentioned by Wang et al.
[26] and Ishikawa et al. [8] in a related context. Moreover, the depth
estimates are approximated by the neural network, rather than being
true values. For each sphere, the image content is therefore defined
by the respective depth values within a given range centered around
the respective sphere radius. One notable benefit of this method is
its flexibility in addressing both detail level and performance, while
still being able to take the nature of the actual scenario into account.
In other words, the spacing of spheres can be adjusted to indoor and
outdoor scenarios, such that the respective experience in VR is op-
timized.

4 IMPLEMENTATION

In the following, we discuss certain aspects of a practical imple-
mentation of our depth effect. Note that we focus on the use of
conventional hardware and software and on the viability for enthu-
siasts, abstaining from the discussion of special video setups or user
customization.
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Spheres Vergence Disparity

Figure 5: (Vergence) Vergence Angle: The magnitude of the an-
gle, i.e., α and β , decreases as the distance increases. (Disparity)
Binocular Disparity: From the perspective of the left camera, points
F and O appear much closer together than they do from the right
camera, measurable through the angles γ and δ .

Figure 6: Outside view of individual spheres at different sizes with
their corresponding masking: The top row images are a view of the
corresponding depth map with the edges of each sphere marked in
red for better visibility.

4.1 Video Preprocessing
Each video has to be preprocessed to extract the depth information.
Once all raw depth images are available, the most obvious approach
is to encode the frames into a second separate video. However, this
causes several problems during playback later on, as both videos
need to be played back simultaneously in total sync. Therefore,
we create a single video that combines the original frame and the
depth map. An important consideration here is that there are limits
to the format of state-of-the-art video encoders and decoders. Par-
ticular resolution limits apply to older H.264 codec1 profiles, while
for newer levels hardware acceleration is not supported on all de-
vices; therefore, the H.265 codec2 is usually used, while the maxi-
mum video width and height are still limited to 8192×4320 pixels3.
Moreover, video formats do not contain alpha channels, which we
could use to supplement the original imagery with a fourth channel.

We can align the depth frames right below or beside the RGB
image for resolutions of 4k and slightly above, staying within res-
olution bounds of H.265 and requiring only one player instance at
runtime. However, if a full-resolution depth video is desired for
higher resolutions, this has to be stored in a separate video file, or a
lower-resolution version of the depth frame has to be used, trading
convenience against level of detail.

4.2 Runtime Application
Most VR applications are built on the Unity game engine [14], so
is our prototypical implementation. Because we want to leverage
the flexibility of adapting the number and radii of spheres, only a

1MPEG-4, Advanced Video Coding (Part 10) (H.264)
2High Efficiency Video Coding (HEVC) Family, H.265, MPEG-H Part 2
3We refer to hardware limitations on mobile devices, such as the Quest3.

Figure 7: Outside view of a combined, texture mapped and masked
multi sphere setup: On the left is a view of the corresponding depth
map, with the edges of each sphere marked in red for better visibil-
ity.

single sphere is created initially within the default scene. At the
center of the sphere is a rigid set of two cameras, linked to each
of the two displays inside the VR headset. Both cameras face the
same direction with a constant baseline equal to the average dis-
tance between the eyes of a user (i.e., approximately 67 mm). The
gyroscopic sensor of the VR headset is used to properly adapt the
rotation and translation of the camera rig about its center, as the
user’s head moves.

To display a single image as a set of depth-separated spheres, we
use a fragment shader, also known as a pixel shader, implementing
the two UV mapping in Equation 1. The shader maps the entire
image texture to the outside of the sphere, and we use front-face
culling to create an unobstructed view onto the sphere from the
inside4. Based on the given scenario to display, we replicate the
textured sphere with the same center multiple times with different
radii, which results in an onion-shaped set of fully textured spheres.

A material shader is used for masking each sphere depending
on the depth map. For each individual pixel, we look up its cor-
responding depth value and compare it to the desired range of the
spheres. Setting the corresponding value in the alpha channel to its
extremes, i.e., 1 or 0 for opaque and transparent, respectively, cre-
ates very harsh edges at depth discontinuities, i.e., discontinuities of
the respective sphere contents. We therefore counteract this effect
by using a gradual alpha blending around the edges, which is essen-
tially a linear transition from 0 to 1 over a range of a few pixels. On
the one hand, this creates a loss in sharpness; however, at the same
time it partially obscures the limit in the number of spheres used.
In Figure 6 the masked spheres and the individual depth boundaries
are shown. Figure 7 depicts a flattened version of the combination
of all individual spheres.

For the replay of a video, this process is essentially repeated for
each video frame delivered by a player instance. Due to the limits
of conventional VR headsets in terms of computational and mem-
ory resources, the number of spheres has to be clearly limited to the
range of 10-20, also depending on the video resolution and the ac-
tual video frame rate. Note that the lookup of the individual values
from the depth map is essentially only a reference, i.e., an offset in
UV coordinates, to a different portion of the decoded video frame,
in case the depth frame has been directly encoded in the video.

5 EVALUATION

To collect our test scenes, we used an Insta360 X3 camera, which is
a commonly used consumer camera. The camera was held in hand
most of the time and in some instances mounted to a backpack. The
Insta360 cameras are not directly saving the recordings in a highly
compatible video format, but use a proprietary format. The official

4Note that we resort to using standard options in Unity here, while more
efficient ways to achieve this goal certainly exist.
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No BE, 657ms 80px, 683ms (+17%) 160px, 711ms (+35%) 320px, 760ms (+68%) 720px, 918ms (+171%)

Figure 8: Comparison between different border extension widths based on a resolution of 1440x720 pixels. The first row shows the used
extension width in pixels and the computation time for the depth map in absolute and relative terms, together with the resulting depth frame.
The second row shows a cropped image of how the seam between the two borders changes due to the border extension process.

Cars Barn Forest Lecture
Resolution [px] 5760×2880 5760×2880 5760×2880 5760×2880

Frame rate [FPS] 30 30 30 30
Duration [min] 01:07 01:52 96:14 02:06
File size [GB] 0.54 0.84 58.7 0.76

Walking distance 60 m 50 m 3 km 100 m

Table 1: A detailed overview of some important parameters of dif-
ferent scenes.

Cars

Forest

Barn

Lecture

Cars

Forest

Barn

Lecture

Figure 9: Exemplary frames from our four datasets: Cars, Barn,
Forest, Lecture.

Insta360 Studio software must be used to export and convert the
video to an MP4/H.265 file format.

We recorded at 5.7K resolution, which is the highest available
and equivalent to a resolution of 5760×2880 pixels, while the fram-
erate is limited to 30 fps. The corresponding video bitrate averages
70 MBit/s. In Table 1 an overview of the most important parameters
is provided. All preprocessing was performed on a conventional
desktop computer with an Nvidia RTX 4070 graphics card.

5.1 Border Extension Effects
As mentioned in Section 3.1, we need to pad the original images
on the side replicating image data to counteract certain effects in
the depth estimation pipeline. To illustrate the importance of this
measure, we conducted experiments with different padding widths,
also recording the induced computational overhead.

In our example, the downscaled frame has a size of 1440×720
pixels. In Figure 8 the results of different border widths are shown,
including a close-up of the depth values at the image seam in the
second row. As expected, the discontinuity at the seam becomes
more and more unnoticeable as the border size increases, while the
computational efforts increase at the same time. An extension of
720 pixels on each side essentially results in double the total num-
ber of pixels processed by the depth estimation engine, as shown
in the far left column in Figure 8. The seem appears to vanish al-
most entirely in the middle column, corresponding to a padding of

160 pixels at each side of the image. This indicates a good trade-
off between the induced costs and the depth accuracy to settle at a
padding size which is equivalent to about 20% of the original im-
age, i.e., about 10% padded to each image side.

5.2 Scene Analysis
Several videos were taken in both indoor and outdoor environments,
which we used to analyze several parameters in our algorithm. Dur-
ing preprocessing, we place depth frames with half the image reso-
lution at the bottom of the original frame and encode a single H.265
video for each sequence. Note that the following analysis takes cer-
tain frame pairs from each sequence to show different effects, while
the real performance can be better assessed by the accompanying
supplementary video and application materials.

Cars The first scene was recorded walking straight on the side-
walk in the inner city for about one minute. Two reference frames
are shown in the first row of Figure 9. The scene features multiple
cars and multistory buildings, in addition to a plain and far-reaching
ground surface. The scene is special in the sense that it also fea-
tures many reflective materials (i.e., car windows) and both objects,
which are very close and very far from the actual view point.

A noticeable difference between the two eyes can be observed
in Figure 10a, which is due to the camera offset, but also to the
perspective induced by our effect (i.e., the gray border of the sign
is visible only in the left eye). Our effect can also nicely reproduce
occlusions, as seen from the bicycle, which is more occluded by the
vending machine in the view of the right eye.

Barn The second scene, as shown by two representative frames
in the second row of Figure 9, shows an old barn in the countryside,
which is used to store old wood and machinery. The main char-
acteristic is the poor lighting conditions, in combination with very
dark materials in the surroundings (i.e., wood). The duration of the
video is a little less than two minutes and also includes a recording
of the tractor cabin inside.

In Figure 10b, on the one hand, the strong disparity effect be-
tween the two eyes is shown if the foreground and background ob-
jects are far apart. On the other hand, on closer inspection, the
disruptive repetitive pattern around the edge (i.e., the depth discon-
tinuities mentioned in Section 3.2) is shown in the image of the left
eye, while it is well hidden in the image of the right eye.

Forest The third and longest scene was recorded during a hike
in the woods for about 3 hours. The third row in Figure 9 shows
two frames of this sequence, which feature different lighting con-
ditions, fine-grained textures, and bumpy camera movements. The
sequence was shortened to about 1.5 hours to incorporate various
conditions encountered during the hike, but still to allow testing on
large amounts of data and long video recordings.
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In the frames shown in Figure 10c, a strong disparity effect is
shown in a particular view of a tree close to the camera position.
In addition, repetitive patterns around the edges of the tree are very
clearly visible. These are mainly a result of depth map inaccuracies
due to very thin tree branches, which are not represented accurately
in the corresponding depth map, which is admittedly provided in a
lower resolution. An alternative improvement could be provided by
the use of a full-resolution depth map, or the use of a successor to
Depth Anything with improved depth estimation capabilities.

Lecture Our final scene was recorded in a lecture hall, as de-
picted from two exemplary images in the last row of Figure 9. This
scene is about two minutes long and very special due to the domi-
nance of bland textures and straight lines and edges. Such structures
primarily challenge the capabilities of the underlying depth estima-
tion algorithm, but also our spherical visualization setup.

In Figure 10d, two frames are shown for the left and right eyes,
respectively. Although the edge of the table is a straight line, ap-
parently the transition between spheres of multiple distinct radii
becomes clearly visible. We attribute these distortions mainly to
the discretization of the, otherwise continuous, depth estimates to a
limited number of spheres. Increasing the number of spheres and
thereby decreasing the discretization error would clearly reduce the
visibility of such artifacts.

5.3 Performance

In order to provide an overview of the overall performance of our
method, we evaluated both the offline preprocessing stage and the
runtime stage separately.

In Figure 11, the time required for the estimation of the depth
map is given based on a polling size of 1/16 of the original image
resolution, anticipating the slicing (i.e., segmentation) of an indi-
vidual large video into segments of 30 frames each. Apparently,
this segmentation step takes the most time individually due to an
increased computation and memory access when saving and creat-
ing video clips. However, most of the time is spent on the depth
map calculation, as this has to be done for each individual frame.

The individual time to estimate the depth map based on different
polling sizes is shown in Figure 12. Obviously, the polling resolu-
tion strongly dictates the speed of the depth computation and, at the
same time, also indicates the size and accuracy of the overall depth
map.

We tested our application on two VR headsets with notably dif-
ferent hardware specifications, the Meta Quest 2 and the Meta
Quest 3. We tracked their performance on the basis of a varying
number of spheres and depict the results in Figure 13.

The maximum frame rate achieved was 72fps, which is due to
a manufacturer limitation5. However, every value below 72fps
thereby actually suggests full utilization of the hardware. Although
the quality of the effect increases with an increase in the number of
spheres, we consider 50fps to be the lower limit without significant
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negative impact, such as headache and nausea, following the find-
ings of Zhang [31]. In turn, this means that the maximum number
of spheres on our tested headsets is 8 and 16 for Meta Quest 2 and
Meta Quest 3, respectively.

6 CONCLUSION AND FUTURE WORK

In this work, we present our approach to recreate depth experience
for 360° monocular panoramic videos in VR. Our approach relies
on deep learning, Depth Anything, which infers metric depth to im-
agery based on contextual clues. In our method, we use this frame-
work to enhance individual monocular 360° images with depth es-
timates, and we provide an approach to create an immersive replay
in VR using a multi-spherical setup. We experimentally investigate
several aspects of our approach and provide examples to assess the
performance of our method.

Based on the experimental evaluation, several areas for further
improvement become apparent. An example of such an improve-
ment is the use of a more evolved depth estimation pipeline, Depth
Anything v2 [30], which became available just recently. As this
new version claims better performance for thin detailed structures,
problems, as mentioned in the hiking scenario, might be signifi-
cantly reduced automatically. Another obvious improvement in-
volves the number of spheres that can be rendered in a conventional
consumer headset. Improving the overall implementations in one
way or the other and thereby increasing the number of spheres cer-
tainly increases immersion and reduces problems, as mentioned, for
example, for the lecture hall scene. Finally, separating depth and
RGB video as two separate video streams would allow us to pro-
vide full-frame depth imagery, rather than down-scaled ones. This
type of adaption of our pipeline is merely of engineering character;
however, it is important to understand the implications on the over-
all process. This concerns the additional overhead and synchroniza-
tion efforts induced by using multiple video player instances and an
increased amount of depth data onto the runtime performance on
state-of-the-art headsets. We therefore consider this as work further
down the road, while for the time being we focus on the reduction
of visual artifacts at depth discontinuities by testing more evolved
blending algorithms.
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