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Abstract

In recent years many powerful Computer Vision algo-
rithms have been invented, making automatic or semi-
automatic solutions to many popular vision tasks, such as
visual object recognition or camera calibration, possible.
On the other hand embedded vision platforms and solutions
such as smart cameras have successfully emerged, however,
only offering limited computational and memory resources.

The first contribution of this paper is the investigation
of a set of robust local feature detectors and descriptors
for application on embedded systems. We briefly describe
the methods involved, i.e. the DoG (Difference of Gaussian)
and MSER (Maximally Stable Extremal Regions) detector
as well as the PCA-SIFT descriptor, and discuss their suit-
ability for smart systems and their qualification for given
tasks. The second contribution of this work is the exper-
imental evaluation of these methods on two challenging
tasks, namely fully embedded object recognition on a mod-
erate size database and on the task of robust camera cal-
ibration. Our approach is fortified by encouraging results
we present at length.

1. Introduction
In the last few years, Computer Vision has become one

of the most powerful tools in engineering. Industrial and
commercial demands are further pushing the development
of high-performance vision algorithms, bringing up effi-
cient solutions to existing problems and also many new ap-
plications into everyones everyday life. This has led to the
deployment of large networks of cameras and, in turn, a de-
mand for local processing [4]. Therefore and due to their
flexibility, scalability as well as passive operation special
interest has been placed on smart camera systems, e.g. for
industrial and surveillance applications.

Robust local features and descriptors have already been

successfully applied to related tasks like, auto-calibration
of cameras or object recognition. They are designed to be
invariant to illumination changes, image scale and rotation.
Therefore, these features may be robustly matched over a
substantial range of affine distortion and change in 3D view-
point. Clearly these properties come at high demands in
terms of computational power and memory. Hence, until
now in resource constrained embedded systems, local fea-
ture and descriptor based systems for calibration or recog-
nition have been mostly avoided.

In general, most Computer Vision algorithms are de-
signed for use on standard desktop computers, having to
meet almost no constraints in terms of memory and compu-
tational power consumption. Additionally, they mostly do
not fit the fixed-point and SIMD architectures of embedded
systems (e.g. fixed point DSPs). Altogether, this has of-
ten made the full employment of state-of-the-art algorithms
a tedious task on resource constrained embedded devices.
As embedded systems are limited in enrolling their full po-
tential without taking advantage of the state-of-the-art algo-
rithms, we concentrate our work on connecting these two
worlds in order to benefit from both approaches.

In this work we investigate a set of highly-efficient ro-
bust local features and descriptors used in a wide range of
popular Computer Vision applications. We discuss the suit-
ability of these methods for implementation and usage on
embedded systems and experimentally show their efficiency
on two applications, namely a fully embedded object recog-
nition system and a camera calibration framework. Our en-
couraging results justify the usage of these algorithms for
specific problems in the world of smart sensors.

Section 2 gives an overview about related work in the
area of embedded systems. In section 3 we briefly discuss
the criteria for choosing algorithms for given tasks. Further-
more, we shortly describe our region detection and descrip-
tion algorithms, together with the algorithms for descriptor
matching and for epipolar geometry calculation. An exper-



imental evaluation of our implementations and examples of
two applications, namely object recognition and camera cal-
ibration, is given in section 4. The remainder of the paper in
section 5 contains some concluding remarks and an outlook
on future work.

2. Related Work
In recent years smart cameras have attracted interest of

many research groups with yielded applications in traffic
monitoring [1, 5], home care [12], gesture recognition [21],
to mention a few. Many applications demand for well cal-
ibrated systems while fast and easy deployment still has
to be guaranteed. Thus, solving the challenges of self-
localization and self-calibration is very important for smart
camera networks.

Both tasks (see also section 3.6) have shown to be par-
tially solvable using point correspondences and, thus, local
features and descriptors. Clearly, the performance of al-
gorithms based on point correspondences is highly depen-
dent on the quality of the detection process and on the type
of descriptors used. Although Mikolajczyk et al. [18, 19]
have shown that Difference of Gaussian (DoG) keypoints in
combination with Scale Invariant Feature Transform (SIFT)
descriptors [14] have proven to be very effective in terms
of detectability and repeatability, most embedded systems
use simpler corner detectors [10] or use additional active
LEDs [2, 13] to perform calibration. Yet, Cheng et al. [6] as
well as Mallett [15] were among the first to apply SIFT in
embedded systems in order to perform multi-camera self-
localization and calibration. In the work of Cheng et al.
DoG keypoints are detected on high resolution images, and
a PCA-based compression method is performed on the cor-
responding descriptors to reduce the amount of data to be
transmitted between camera nodes. The feasibility of their
approach was shown in a multi-camera simulation to de-
termine vision graphs and camera localization. Note that
this way of using PCA is remarkably different from the
one used to generate PCA-SIFT descriptors as introduced in
section 3.4. Furthermore, we point out that the huge amount
of computational work in this approach presents a big issue
and that the implementation of parts of the algorithms on a
smart camera network presents a big challenge.

While the usage of local features and descriptors is not
limited to the task of camera calibration, they have not been
widely applied in the area of embedded systems by now,
e.g. for object recognition. Yet, to the best of our knowl-
edge there exists no completely embedded object recogni-
tion system which is based on local interest regions and de-
scriptors. The only somehow related work we are aware of
is the work of Yeh et al. [22]. In this work two images are
taken with a camera equipped to a mobile phone, one im-
age with and one without the object sought. An interactive
segmentation tool is used to isolate the object and to submit

its image as a query to a web-database. After recognizing
the object, the database engine provides the user with use-
ful information about the object, be it a famous building or
a shopping item. At least the step of object segmentation
- and thereby describing the object - is performed on the
smart phone. The main strength of this algorithm is that it is
in general not limited to any type of object since the recog-
nition is done remotely using a more powerful device. We
still believe that the usage of local features and descriptors
could make the framework more efficient, at least in terms
of communication costs via compression of the amount of
data to be transmitted.

To sum up, there is only little literature about the usage
of the algorithms described in the context of smart cameras.
We want to bring local features and descriptors into this
field more generally and intend to show that they can be
successfully applied in various applications related to em-
bedded systems.

3. Algorithm Selection

In this section we first describe the criteria for choosing
dedicated algorithms for given tasks based on our hardware
platform. Furthermore, we describe the algorithms we have
selected due to their suitability to solve the two examples
given. We justify the usage of these algorithms and outline
their special relevance and qualification for usage on smart
systems. We also shortly describe two descriptor matching
methods and the robust algorithm for calculating the epipo-
lar geometry from a given image pair.

3.1. Hardware Constraints and Selection Criteria

Our hardware platform is similar to the one used in [1]
and represents a typical and popular set-up used in many
applications. Hence, all algorithms run on a single Texas
InstrumentsTM TMS320C6414 DSP running at 600MHz
with 1MB internal cache, the amount of external memory
is 16MB.

Given a special task, the challenge is choosing the best
algorithms currently available to solve the problem most ef-
ficiently under consideration of additional hardware con-
straints. Clearly the selection of algorithms has to be
done according to special application dependent criteria too.
Anyway, the best choice of algorithms must result in a sys-
tem which is optimized in more than one aspect. For both
applications we present in the next section there is more
than one aspect to be considered during system design. In
the first case, it is important that the recognition perfor-
mance is good (choosing the right type of object) even un-
der adverse conditions, while the time spent for recogni-
tion should be minimized. In the second case, for camera
calibration, communication costs between individual cam-
era entities should be minimized, but the overall number of



correct point correspondences (the matching performance)
should still be kept at a high level to guarantee for a good
calibration result.

In the following we describe the set of algorithms we
have chosen for our two tasks to be solved most efficiently
and note their properties which make them suitable for our
purposes.

3.2. DoG Keypoints

The first algorithm we have investigated is Lowe’s Dif-
ference of Gaussian (DoG) detector, which can be used
to obtain rather accurate keypoints with high repeatability
[14].

The DoG-detector takes the differences of Gaussian
blurred images as an approximation of the scale normalized
Laplacian and uses the local maxima and minima of the re-
sponses in scale space as an indicator for keypoints. The
DoG-detector mainly delivers keypoints which indicate the
presence of blob-like (more or less circular) structures in
images. For each keypoint a circular region around the key-
point is cropped whose size is dependent on the scale factor
delivered during detection. By summing up the gradients in
the image patch, the main gradient direction is determined
and assigned as orientation to the keypoint. A subsequent
descriptor calculation is done on the image patch after ro-
tating it to 0◦.

A nice feature of the DoG detector is that it is almost
purely based on image filtering and addition/subtraction op-
erations. While a clever arrangement of filtering and search
operations makes the algorithm also efficient in terms of
memory usage, the algorithm is very well suited for DSP
platforms, as they are mainly designed for fast filter opera-
tions. Moreover, the filtering can be implemented in fixed-
point which results in a significant performance increase.

3.3. MSER

MSER stands for Maximally Stable Extremal Regions
and was first proposed by Matas et al. [16]. This region
detector is complementary to the DoG-detector and is based
on searching for regions which possess an extremal property
of the intensity function inside and on their outer boundary.

In short, the MSER detector searches for regions which
are brighter or darker than their surroundings, i.e. are sur-
rounded by darker, vice-versa brighter pixels. First, pixels
are sorted in ascending or descending order of their inten-
sity value, depending on the region type to be detected. The
pixel array is sequentially fed into a union-find algorithm
and a tree-like shaped data structure is maintained, whereas
the nodes contain information about pixel neighborhoods,
as well as information about intensity value relationships.
Finally, nodes which satisfy a set of predefined criteria are
sought by a tree walking algorithm, which in our case has
to be iterative due to our architectural hardware constraints.

The big advantage of the MSER algorithm is that it is ef-
ficiently computable - at least on conventional desktop com-
puters - and that the regions to be found are not restricted
anyhow in terms of area or shape. Moreover, it is possible
to identify regions across very large viewpoint changes be-
cause the extremal property of the regions in general does
not change. For ease of implementation we have not imple-
mented full-featured Local Affine Frames [17], but used the
ellipse fitting approach of Mikolajczyk [19]. After fitting
an ellipse to the region, the image patch below the ellipse
is deskewed and rotated to 0◦ for the calculation of the de-
scriptors 1.

An appealing feature of this algorithm is that it does not
need any floating point arithmetics to be performed. How-
ever a union-find based algorithm creates a tree-like data
structure, and though recursive algorithms are not suitable
for DSP platforms, an iterative tree-walking algorithm has
to be used. The shape of the tree is heavily dependent on the
image processed, thus the runtime of the algorithm can not
be estimated easily. Moreover, for building the data struc-
ture a large amount of memory is needed. The reason for
choosing the MSER algorithm for implementation on the
DSP is that its superior performance for identifying distinc-
tive regions simply votes out all disadvantages. Moreover,
when runtime is not a critical factor, the MSER algorithm
might still be a valuable option.

3.4. PCA-SIFT

Ke and Sukthankar [11] proposed to use a compact de-
scriptor based on eigenspace analysis, the so called PCA-
SIFT descriptor. This descriptor has less in common with
the original SIFT descriptor, proposed in [14], as one might
suppose. They calculated a PCA (Principal Component
Analysis) eigenspace on the gradient images of a represen-
tative number of over 20000 image patches. The descriptor
of a new image tile is generated by projecting the gradients
of the tile onto the precalculated eigenspace keeping only
the d most significant eigenvectors.

This descriptor has several advantages, especially for our
utilization. First, the descriptor is much more compact, be-
cause they have proven the d = 36 dimensional descrip-
tor to exhibit the same discriminatory power as the 128-
dimensional SIFT descriptor. A second big advantage is,
that a further decrement of d results in only a slight loss in
discriminatory power, thereby making the descriptor calcu-
lation itself scalable.

Fortunately, for application in a smart camera network
the reduction of the descriptor length results in three more
favorable effects; first, transmission costs are obviously re-
duced by a factor of (at least) 4. Secondly, the matching

1The drawback of this method is that two descriptors have to be calcu-
lated for each region, one for 0◦ and one for 180◦ due to the ambiguous
orientation of the ellipse.



effort is also massively reduced because of the shortened
descriptor lengths. Finally, the amount of storage for the
descriptors is also reduced by a factor of≥ 4 because of the
smaller amount of memory needed to store the descriptors.

3.5. Descriptor Matching

An important part of most systems using local features is
a descriptor matching engine. Efficient descriptor matching
is a challenge on its own and a lot of distance metrics exist.
One very popular metric is the Euclidean distance, which is
defined as

dist(X, Y ) = sqrt(
N∑

i=1

(xi − yi)2) (1)

with X and Y being vectors of length N , and xi, yi be-
ing the i-th element of vector X , respectively Y . Matching
of descriptors is relatively expensive. The naive exhaustive
search has a complexity of O(nmd) with n being the num-
ber of descriptors in a database, m the number of descriptors
to be matched and d the dimension of the descriptor vec-
tors. Making d smaller is one possible solution to reduce
the computational load, using k-d trees and approximate-
nearest-neighbor search algorithms is another one.

We have evaluated both matching approaches, a k-d
tree with nearest-neighbor search and the exhaustive search
method. Furthermore, we decided to use the sum of squared
distances metric, which is very similar to the Euclidean
metric except that the normalizing square root is omitted.
Extracting the root is a very expensive step on a DSP; while
the order of elements is not changed, whether the root is
taken or not, we can safely omit this operation and still find
the nearest-neighbor. Regarding our tasks, this is the cru-
cial matter to make our object recognition system real-time
capable, as will be shown later.

3.6. Epipolar Geometry

For calculating the epipolar geometry between an image
pair, point correspondences between the images have to be
established. Once having enough robust potential point cor-
respondences it is possible to compute the cameras extrinsic
parameters and estimate the fundamental matrix F, where
x′T Fx = 0 and x′ and x are the corresponding features
in the first, respectively the second image. Depending on
the quality of the matches, this works for both stereo and
wide-baseline setups [3]. Note, however, that in order to
achieve high accuracy, point correspondences in general po-
sition should be distributed uniformly. Hence, for slightly
overlapping views, different methods, i.e. [20], have to be
applied.
For most scenarios, though, one of the simplest yet efficient
ways to estimate F is the normalized 8-point algorithm more
precisely described in [9]. In order to handle the many

possible outliers an iterative matching method RANSAC
(RANdom SAmple Concensus) [7] is applied. For n iter-
ations RANSAC takes randomly eight points and calculates
the fundamental matrix using the 8-point algorithm. After
that a distance d for each putative correspondence is calcu-
lated. We used the Sampson distance measure which yields
quite good results also described in [9]. Then the number
of inliers consistent with F is determined. Finally, F with
the largest number of inliers is taken. For a more precise
algorithm overview again see [9].

Because the calculation of the fundamental matrix is
very sensitive to outliers, a robust outlier detection al-
gorithm is necessary. The special qualification of the
RANSAC based outlier detection algorithm for our pur-
poses is that it is easy to implement, and that it does not
require us to store large amounts of data.

4. Experimental Section
Now we will evaluate our algorithms on the two chal-

lenging tasks given, namely object recognition and camera
calibration. First we will describe the datasets and experi-
mental setup used, then we list the timings for each separate
module on our embedded platform, and afterwards we elu-
cidate and discuss the results of our algorithms.

Figure 1. A subset of the 50 randomly selected objects in our
database from the ALOI (Amsterdam Library Object Images),
viewed from 0◦.

4.1. Object Recognition

In this application a small-size database is deployed on
our embedded system. The objects are described from one
frontal view only and the recognition performance of the
system is evaluated over a total viewpoint range of −60◦

to +60◦. The important factors during system setup are to
guarantee that the average time needed for recognizing an
object is below one second, and that the data buffers fit into
the internal memory of the DSP.

Dataset and System Setup For our experiments we ran-
domly choose a 50 object subset of the ALOI database [8].
All object images are resized to CIF resolution (352x288),
for training as well as for the performance evaluations of
our system. We take the objects from 0◦ frontal view only
to extract our descriptors for the database. For each image



Figure 2. The four background images onto which we have pro-
jected the objects to further challenge our recognition system.

we first apply the DoG detector to acquire highly distinctive
keypoints. The PCA-SIFT descriptor is subsequently used
to describe the region patches around the keypoints in a flex-
ible, yet efficient manner. The descriptors are appended to
our database together with the object id. The final database
is a list containing 7395 descriptors (≈ 148 descriptors per
object on average). The step of database generation is done
on a desktop computer and the database is then transfered to
the DSP platform as a raw block of data. For testing the per-
formance of our system, we supply the query objects from
±60◦ viewpoint change in steps of 10◦ to also challenge
the descriptor calculation and matching algorithms. Fur-
thermore, we project the objects onto four different back-
ground images to further complicate the task. During the
recognition phase, the DoG and PCA-SIFT algorithms are
applied on these images (see figure 3 for an example). For
the keypoints and the corresponding descriptors the nearest
neighbors in the descriptor space are determined using ex-
haustive matching or using a k-d tree. As each descriptor
in the database is linked to an object id, the object votes are
summed up in a 50-dimensional histogram and the final re-
sult is the object with the maximum votes in the histogram.

A subset of our 50 objects in our database is depicted
in figure 1, the background images are depicted in figure 2.
To illustrate the difficulty of the task, the projection of all
views of a single object projected onto the ”graffiti” scene
is shown in figure 3.

Recognition Performance Evaluation For the perfor-
mance evaluation of an object recognition system there is
a list of determining factors. On the one hand it is desirable
that the system is able to act in real-time. On the other hand,
the recognition power of the system has to be satisfying too,

−60◦ −50◦ −40◦ −30◦ −20◦ −10◦ 0◦

No BG 32% 40% 62% 86% 96% 100% 100%
Graffiti 28% 34% 54% 82% 92% 94% 100%
Boat 22% 28% 56% 88% 88% 96% 100%
Sea 22% 36% 62% 86% 94% 100% 100%
Trees 28% 30% 54% 82% 88% 96% 100%

10◦ 20◦ 30◦ 40◦ 50◦ 60◦

No BG 100% 98% 98% 70% 46% 38%
Graffiti 100% 92% 86% 64% 42% 36%
Boat 100% 92% 86% 62% 38% 22%
Sea 100% 96% 92% 64% 38% 32%
Trees 100% 92% 92% 58% 40% 28%

Table 1. Detailed results for our recognition setup. The recognition
rate without background clutter is only slightly better than the ones
with background clutter. This owes to the distinctiveness of the
PCA-SIFT descriptor and proofs our choice favorable.

because real-time is really meaningless for a system with-
out sufficient functionality. To state it differently, real-time
is a flexible term given environmental conditions. In our
current setup there was no critical time limit to meet, thus a
good recognition performance was the primary goal. Any-
way, a time span of more than a second might be too long
in an other scenario, making a user of the system impatient
having to wait for the result.

In figure 4 the results for the recognition performance
evaluation of our system using 36-dimensional PCA-SIFT
are depicted. As can easily be seen, the performance is re-
ally satisfying, even in the case where background clutter is
present. For better visibility, we averaged all recognition re-
sults with background images and drew only these averaged
results. A detailed listing of results can be found in table 1.
The recognition performance is between 80% and 100% for
±30◦, but notably drops when the change in viewpoint is
more severe. These results are consistent with the results
presented in [18, 19].

Time and Memory Consumption In table 2 the final
timing results of our object recognition system on our plat-
form are listed. We divide the DoG keypoint detection algo-
rithm into several stages, where the timing results are based
on an average point detection rate per 352x288 image of
198 keypoints (object projected onto arbitrary background).
The DoG detector is quite fast due to the suitability of filter-
based algorithms for application on DSPs. Nevertheless, the
assignment of the orientation involves calculation of gradi-
ents and summation over subwindows, which takes a little
longer. The PCA-SIFT Descriptors are calculated on 41x41
image patches centered at the keypoint, as in the work of Ke
and Sukthankar [11]. This value also includes the time nec-
essary for rotating, bilinear resizing and cropping the patch
from the original image. The time spent altogether is com-
parable to the one for orientation assignment. As mentioned
in section 3.5, we evaluated both matching methods, ex-
haustive search and a k-d tree with nearest-neighbor search.



Figure 3. A single object viewed from of −60◦ to +60◦ in steps of 10◦, projected onto the ”graffiti” background (the frontal view is
depicted twice).

Figure 4. Recognition performance for a database of 50 objects
over a viewpoint change of±60◦. For better visibility we averaged
the recognition rate of all background results into one single plot.
The recognition results for full range and all separate background
results are given in table 1.

On average 198 descriptors are matched against 7395 in our
database. Obviously the k-d tree is much more efficient, al-
though matching is still the most time consuming step in our
system. The high standard deviation in orientation assign-
ment and descriptor matching is an indicator for the high
variation of the number of keypoints detected in the images,
which ranges from only 8 keypoints up to 709 keypoints at
max. Recognizing an object takes about 0.88 seconds on
average. Please note, that almost 70 % of the total time is
consumed during the matching step. This is an indication
that the matching procedure should further be optimized,
e.g. by using Best-Bin-First as proposed by Lowe [14].

The amount of memory is an evident result of the PCA
data (≈ 220kB) and the descriptor database (≈ 260kB)
for recognition using short, respectively char datatypes for
storage. Storing the descriptors in a k-d tree instead of ac-
cessing the data sequentially by using exhaustive search ad-
ditionally requires about 145 kB.

avg. time [ms] std. dev.
Scale Space Generation 29.16∗ 0.013∗

Extrema Search 21.66∗ 0.947∗

Keypoint Orientation Assignment 111.84∗ 11.427∗

PCA-SIFT Calculation 107.39∗ 53.779∗

Matching (k-d tree) 607.06∗ 306.988∗

Matching (exhaustive) 930.42 488.135
Total: 877.11∗ 372.188∗

PCA-SIFT Calculation / Descriptor 0.56 0.071
Matching (1 vs. 7395) (k-d tree) 3.07 0.219
Matching (1 vs. 7395) (exhaustive) 4.69 0.015

Table 2. Timing results of our object recognition system, based
on an average keypoint detection rate of 198 keypoints. For com-
pleteness we have also included the results for calculating a single
descriptor and for matching the descriptor against our database.
Since we have evaluated two descriptor matching approaches, we
have also included the time needed for descriptor matching using
exhaustive search. The values marked with an asterisk are consid-
ered to calculate the average total time needed for recognizing a
single object.

4.2. Camera Calibration

Our second test scenario is camera calibration. In the
following we will describe our experimental setup and give
notes about our configuration choices and why we have
done so. While camera calibration usually has to be done
only once during deployment, setup time is not necessarily
a critical factor. It is much more important that the number
of point correspondences is high enough, and that the major
amount of correspondences is correct. Moreover, in a cam-
era network it is important to minimize the amount of data
to be transmitted.

System Setup As the MSER detector has been proven to
be a good choice for the task of wide-baseline camera cal-
ibration, we choose the camera calibration task to test its
performance together with the PCA-SIFT descriptor on our
platform. A limiting factor in this task is image size and
resolution. On the one hand, it is hard to calibrate from



low resolution images, on the other hand, the usage of high
resolution images results in a higher memory consumption,
which is critical especially on embedded systems. Thus,
we decided to split the 680x510 test images, which are de-
picted in 6, into 4 tiles, each of size 352x288 with a small
overlap area. The images are separated by an approximately
30◦ viewpoint change. We are aware that this configura-
tion is neither wide-baseline, nor does it provide a good
testbed for proofing the strengths of the MSER detection al-
gorithm together with a robust calibration algorithm. Any-
how, we simply want to demonstrate the approach so we
did not choose a more difficult scenario. Furthermore, it
is common to tile images into smaller parts if memory and
computational resources are limited, thus this setup makes
it possible to process and run our framework without much
additional programming overhead.

Figure 5. Image tiles cropped with overlayed MSER detection re-
sults for positive regions and negative regions on the left, respec-
tively right side. The images are separated by an approximately
30◦ viewpoint change. As can easily be seen the regions found by
the algorithm are almost the same for both views.

We process both sets of image tiles sequentially on a sin-
gle instance of our platform, only storing and exchanging
the region coordinates and the corresponding descriptors as
if they were passed between separate smart cameras. Af-
ter calculating positive and negative MSERs, we calculate
the PCA-SIFT descriptors on the deskewed patches for both
types of regions separately. Also the subsequent matching
of the descriptors of each type is done separately to avoid
additional wrong matches. The descriptors are matched us-
ing exhaustive search and putative point correspondences
are established. The RANSAC-based fundamental matrix
calculation algorithm is finally used to eliminate outliers
and to calculate the epipolar geometry of the image pair.

Figure 6. Our calibration scenario, on which we have calculated
the fundamental matrix, and three corresponding epipolar lines

avg. time [ms] std. dev.
Tree Data Structure Building 412.96 67.324
Tree Walking Algorithm 2572.86 712.395
Ellipse Fitting 51.38 28.293
PCA-SIFT Calculation 343.17 144.945
Total: 3380.37 768.890

Ellipse Fitting / MSER 0.13 0.021
PCA-SIFT Calculation / Descriptor 0.57 0.010

Table 3. Timing results for the MSER detection algorithm. The re-
sults are obtained detecting positive or negative regions separately
for about 358 (positive or negative) regions and an average number
of 597 descriptors to be calculated.

Calibration Results In figure 5 the results of our MSER
detection on two sample tiles of our image pair for posi-
tive and negative regions are depicted. The detection algo-
rithm enumerates the same parts in both images as interest
regions. In our calibration experiment the algorithm alto-
gether detects 951 regions in the first image and 976 re-
gions in the second image respectively. In figure 6 three
corresponding epipolar lines are overlayed on our calibra-
tion test images. The average reprojection error is in the
range of a few pixels.



Timing Results In table 3 the timing results for our im-
plementation of the detector are listed. We ran the detection
algorithm on the images used for our object recognition ex-
periment. All results are based on an average detection of
358 regions per image and 597 descriptors2. We have not
listed the amount of time necessary for calibrating an image
pair with our complete calibration framework. The reason
for doing so is that the time span needed is heavily depen-
dent on the image data, i.e. on the number of descriptors to
be matched, and especially on the number of RANSAC it-
erations needed for robustly identifying and discarding out-
liers. For our calibration scenario, it takes our system less
than a minute to calculate the epipolar geometry.

The runtime of all parts of the MSER detection algo-
rithm is heavily dependent on the image data. Furthermore,
it is somewhat slower than the DoG detector, which owes
to its algorithmic workflow. Random memory accesses, the
necessity of linked lists and the tree-like shape of the data
structure disunites the architectural strengths of the plat-
form and the algorithm. Nevertheless, MSER is one of the
most popular approaches and has been shown to perform
very well for this task. Due to the fact that camera calibra-
tion has to be done only once during setup, the time needed
for detection is not critical and thus the algorithm can be
used for this purpose without any complaints.

5. Conclusion
In this paper we presented our investigation of a set of lo-

cal features and their suitability for embedded systems. We
used the best state-of-the-art detectors, MSER and DoG, for
selection of interest regions, and combined them with one
of the most promising descriptors, the PCA-SIFT descrip-
tor. All algorithms were fully implemented and tested on
a single-chip based embedded platform and their suitabil-
ity was shown on the popular tasks of camera calibration
and object recognition. Doing so we further narrowed the
gap between high-level state-of-the-art vision and resource
constrained embedded systems.

Future work will both concentrate on additional algo-
rithm improvements and a system expansion to additional
applications such as multi-camera tracking. Moreover, we
aim to employ better region descriptors such as local affine
frames in order to allow wide-baseline calibration and lo-
calization.
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