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Abstract

In this paper, we discuss how the sensors available in
modern smartphones can improve 6-degree-of-freedom
(6DOF) localization in wide-area environments. In our
research, we focus on phones as a platform for large-
scale Augmented Reality (AR) applications. Thus, our
aim is to estimate the position and orientation of the de-
vice accurately and fast – it is unrealistic to assume that
users are willing to wait tenths of seconds before they
can interact with the application. We propose supple-
menting vision methods with sensor readings from the
compass and accelerometer available in most modern
smartphones. We evaluate this approach on a large-
scale reconstruction of the city center of Graz, Austria.
Our results show that our approach improves both ac-
curacy and localization time, in comparison to an ex-
isting localization approach based solely on vision. We
finally conclude our paper with a real-world validation
of the approach on an iPhone 4S.

1. Introduction

Highly accurate 6 degree-of-freedom (6DOF) localiza-
tion is the first and most important part of any Aug-
mented Reality (AR) application. The position and ori-
entation of the user’s device in the environment must be
estimated, before any augmentation can occur. In mo-
bile AR, we face the challenge of performing this esti-
mate on a phone, typically in wide-area environments.
Due to the interactive nature of AR applications, local-
ization time has a direct impact on the user experience
of an AR application, because it determines how long
the user must wait before interaction with the applica-
tion can start. We therefore need to localize the phone
(a) accurately in terms of position (sub-meter accuracy)
and orientation (< 5◦ angular error), and (b) fast, such
that the initialization phase takes a few seconds at most.

In the Computer Vision (CV) community the local-
ization problem has mainly been solved on a coarse

scale using computationally demanding algorithms. Ex-
emplary works include [1, 8, 12, 14, 17, 18]. With the
exception of [8], the localization task is solved with ac-
curacies up to several meters. Furthermore localization
is meant to determine a position only (2DOF or 3DOF),
rather than a full 6DOF pose, thus these approaches are
not directly suitable for AR.

Due to its special relevance, highly accurate and real-
time localization on mobile phones is a topic mainly
discussed in the AR community. A system for 2DOF
outdoor localization was proposed in [15], while a
SLAM-like system called PTAM was proposed in [10].
In [4, 6] systems for landmark recognition are proposed,
but in both approaches the authors omit to perform any
computational tasks on smartphones explicitly. In re-
cent work, we discussed the use of large-scale point-
cloud reconstructions for wide-area localization in in-
door and outdoor environments [2, 3]. Our work was
the first to show 6DOF localization in wide-area envi-
ronments with sub-meter accuracy on a mobile device.

Apart from GPS, sensors have been rarely used for
localization so far. Compass information for orientation
tracking was recently utilized [13], while gyroscopes
have been studied in [11] for improved feature recog-
nition. Our work adresses this research gap.

We are the first to investigate the joint usage of vi-
sion and multiple sensors (GPS, compass, accelerome-
ter) for highly accurate 6DOF localization in wide-area
environments on mobile phones. The main contribution
of this work is therefore a novel method for partitioning
3D features, such that they can be efficiently matched
using sensor information, and the evaluation of previ-
ously proposed gravity-aware features [11] in outdoor
localization. Evaluating our approach in an established
localization framework [3], we achieve results superior
to previous reports. The performance is considerably
improved both in terms of robustness and speed, by ex-
ploiting the sensors built into most current smartphones.
We validate our approach on an iPhone 4S in a real-
world scenario, showing the direct applicability of our
contribution to the field of mobile AR.
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Figure 1: Flowchart of our localization approach.

2. Localization Approach

As shown in Figure 1, our localization approach is di-
vided into an offline data-generation step and an online
localization step. In the following, we refer to each
blocks of the flowchart by the code in its top-left cor-
ner.

Data Generation
First, we capture a set of photographs of the area to re-
construct (A1). We then use the photographs to gener-
ate a sparse point-cloud reconstruction, using structure-
from-motion (SfM) and a modified version of SURF
[5]. The reconstruction is registered to global coordi-
nates (A2), which is currently done manually. However,
alternatively an automatic approach as presented in [9]
can be used.

We take into account geographic direction and grav-
ity when extracting the features (Figure 2(a)). Each in-

dividual 3D point is not only characterized by a descrip-
tor but also by a normal vector. We calculate this nor-
mal vector as the mean of the vectors connecting the 3D
point and all cameras observing it. Since the reconstruc-
tion is upright-oriented, we use the gravity vector as the
common feature orientation (similar to [11]), instead of
using dominant gradients.

We partition the reconstruction into several overlap-
ping blocks, using a rectangular grid where each block
covers 50 × 50 meters. We store all features of each
block as a separate feature bag. The features of a bag
are binned based on their orientation with respect to the
real geographic direction (A3). Since SURF features
can be reasonably redetected under ±45◦ of viewpoint
change, we use bins covering an angle of about 60◦,
such that they slightly overlap (Figure 2(b)). To allow
for fast matching, we finally create a tree-like search
structure for each bin.

For all blocks of a reconstruction, the corresponding
feature bags are stored in a common feature database
such that they can be retrieved on demand (A4).

Localization
The narrow field of view (FOV) of ordinary mobile
phone cameras is a considerable issue for accurate self-
localization [2], since a wide baseline for triangulation
is missing. We overcome this problem by using an al-
gorithm that uses frame-by-frame tracking to map the
live video images onto a 2048 × 512 pixel panoramic
image (B1) [16]. As the panorama grows it gives us an
increasing FOV on the environment, which guarantees
a wider baseline for localization.

While the panorama is created, image features are
incrementally extracted (B2). We use the accelerometer
and magnetometer built into the device to assign each
feature a gravity and a normal vector (Figure 2(a)). We
expect a GPS estimate to be sufficiently accurate to de-
termine the right 50 × 50 meter block where the user
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Figure 2: Orientation-aware features. (a) Gradient-based vs. orientation-aware feature extraction. (b) Orientation-
aware feature binning using geographic orientation. (c) Orientation-aware feature matching using compass orientation.



(a) Sparse point-cloud reconstruction.

(b) A sample panoramic image of 2048× 512 pixel size.

Figure 3: The sparse point-cloud reconstruction and a
sample panorama used for the evaluation.

is currently located. We retrieve the corresponding fea-
ture bag from the database for matching it against the
features from the panorama. Instead of matching an in-
dividual feature against all features from the bag, we
match it against the bin (Figure 2(c)) corresponding to
the feature’s normal vector.

Established correspondences are passed to a robust
3-Point-Pose (3PP) algorithm which finally determines
a full 6DOF global pose (B4) [7]. In doing so we reg-
ister our panorama to a world reference frame. The
panorama tracker also gives us a local orientation esti-
mate (B3), which can be combined with the global pose
for final usage in our AR applications (B5).

3. Experimental Results

We focus our experiments on validating that our new
system considerably improves both the robustness and
the speed of our previous approach [3]. We take the
time to localize (T2L) as a measure for speed: this is
the time between application start-up and a localization
estimate – practically, the time a user must spend cap-
turing a panorama, before localization succeeds. T2L is
also proportional to the FOV of the panorama that must
be captured for a successful localization.

We reconstructed an area of ∼ 400 × 100 meters in
Graz, Austria. An exemplary snapshot of the 3D point
cloud is shown in Figure 3(a). Using this reconstruc-
tion, we conducted both a quantitative test on a PC and
a qualitative validation on a mobile phone.

Quantitative Test
We captured 204 panoramic images (Figure 3(b)) us-

Figure 4: Localization performance without and with
sensors, for two different distance thresholds.

Figure 5: Number of inliers without and with sensors.

ing a Point Grey Ladybug 3 spherical camera. Each
image was aligned to gravity by estimating a correc-
tion factor from vanishing points and applying a warp-
ing operation. Thereafter, the north direction and the
ground-truth position was determined manually. We
used the panoramas to compare localization perfor-
mance between our sensor-aided system and the pre-
vious method. We consider localization as successful if
the translational distance from the ground truth position
is below a specified threshold: we only use translational
distance because having a correct position estimate and
a wrong orientation estimate is highly unlikely.

We simulate panoramas with varying FOVs by crop-
ping the panoramas from 30◦ to 360◦ in steps of 5◦,
initially pointing towards a building façade. In Fig-
ure 4, we show a comparison between our sensor-aided
system and the previous method, for two different dis-
tance thresholds. Since a small FOV violates the wide-
baseline requirement of the 3PP algorithm, a bigger im-
provement is gained for a looser distance threshold. Al-
though localization performance is already high for our
previous method, we can see that sensors manage to fur-
ther improve it by up to 15%. It is important to stress
the proportionality between FOV and T2L: pushing the
performance curve towards the upper left corner means
that also T2L is decreased significantly.



Panorama Feature Feature Pose
generation extraction matching estim.

W/o sensors [3] 9.1 4.9 36.8 0.7
With sensors 4.9 8.2 0.2

Table 1: Average execution time of our method, with and with-
out sensors, on an iPhone 4S (all timings in milliseconds).

Avg. Min./Max. Avg./Max.
T2L [s] T2L [s] Speedup

W/o sensors [3] 14.18 3.17/22.30 1.71/3.88
With sensors 8.30 2.80/14.41

Table 2: T2L with and without sensors for 21 video
sequences on an iPhone 4S.

Figure 6: Mean translation error for successful local-
ization estimates using a distance threshold of 30cm.

Figure 5 shows a comparison of the two methods in
terms of inliers. Due to the sensor-aided feature man-
agement, the number of inliers can be increased by up
to 50%. This in turn increases robustness considerably,
since the average percentage of inliers is only between
5−10% of the total number of feature correspondences.

As shown in Figure 6 for a distance threshold of
30cm, if localization succeeds the error in translation
is below 15cm for all three dimensions, and decreases
with increasing FOV. Similarly, the angular error is be-
low 1.5◦ and decreases, as depicted in Figure 7.

Qualitative Validation
We implemented our approach on an iPhone 4S and
evaluated the performance on the device. We recorded
21 different videos (and sensor measurements) in the
area of one block with the phone, starting with ran-
dom view directions and keeping the velocity of rota-
tion around the vertical axis constant. We then pro-
cessed all videos on the device, both with and without
using sensor information.

Table 1 shows the average execution time of our
method on the device. Sensors mainly have an impact
on matching time, because with sensors the features are
matched only against the feature bin corresponding to
their normal vector, and not against the whole feature
bag. Pose estimation is also sped up by sensors due to
the higher percentage of inliers.

The T2L results are shown in Table 2. The sensor-
aided method has an average T2L speedup of 1.71 over
the previous method, and is at times almost four times
faster. In average, users can expect that AR applications
using our sensor-aided method will initialize in half of

Figure 7: Mean rotation error for successful localiza-
tion estimates using a distance threshold of 30cm.

the time compared to applications based on the previous
method. The perceivable performance improvement of
the sensor-based method is also demonstrated in the ac-
companying video1. Some sample snapshots are de-
picted in Figure 8.

4. Concluding Remarks

In this paper we presented our work on wide-area local-
ization for smartphones using multiple sensors. To the
best of our knowledge, our work is the only one so far
discussing the use of sensors on mobile phones in wide-
area localization. We show that by the use of sensor
data, the robustness and speed of current localization
methods can be improved considerably. This result di-
rectly impacts the usability of AR applications, because
it allows for a much faster startup time.

The performance of vision-based localization sys-
tems using sparse SfM reconstructions is dependent on
multiple factors. First, the repeatability of feature detec-
tors, especially under extreme lighting conditions, is an
influential factor. Similarly, a high discriminability of
descriptors is crucial, while a certain level of tolerance
to lighting changes is required. We expected gravity-
aligned features to expose a level of performance con-
siderably superior to non-aligned features, especially in
tackling the problem of repetitive structures prevalent in
large-scale urban scenarios. However, contrary to con-
siderations mentioned in [11], gravity-aligned features
turned out to suffer from the same issues as non-aligned
features, on a higher semantic level however (e.g. con-

1Complementary video: http://tinyurl.com/8ykk29u



Figure 8: Sample frames from the augmented live video stream, recorded directly on the iPhone 4S.

fusing multiple similar windows rather than confusing
the corners of a single window). A second issue con-
cerns SfM reconstructions becoming outdated sooner
or later through changes in the real environment. Pro-
cedures to maintain reconstructions up to date are still
missing. In this respect, we argue that more evolved
image features and matching procedures, as well as im-
proved SfM reconstruction and maintenance techniques
are required to further robustify and improve localiza-
tion approaches in the future.
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