
Panoramic Mapping on a Mobile Phone GPU
Georg Reinisch∗ Clemens Arth† Dieter Schmalstieg‡

Institute of Computer Graphics and Vision
Graz University of Technology (Austria)

ABSTRACT

Creating panoramic images in real-time is an expensive opera-
tion for mobile devices. Mapping of individual pixels into the
panoramic image is the main focus of this paper, since it is one
of the most time consuming parts. The pixel-mapping process is
transferred from the Central Processing Unit (CPU) to the Graphics
Processing Unit (GPU). The independence of pixels being projected
allows OpenGL shaders to perform this operation very efficiently.
We propose a shader-based mapping approach and confront it with
an existing solution. The application is implemented for Android
phones and works fluently on current generation devices.

Index Terms: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems —Artificial, augmented, and vir-
tual realities; Evaluation/methodology

1 INTRODUCTION

For AR purposes, Wagner et al. created a method that captures an
image with the camera of a mobile phone and maps it onto the
panoramic image in real-time [5]. The approach takes the camera
feed as input and continuously extends the panoramic image, while
the rotational parameters of the camera motion are estimated.

In this work we complement the original CPU-based rendering
approach with a GPU-based implementation to transfer computa-
tional costs from the CPU to the GPU. The striking advantages of
our approach are the parallel processing of pixels and the efficient
way of improving the image quality.

2 PANORAMIC MAPPING AND TRACKING

The original approach used as a baseline for this work was pro-
posed by Wagner et al. [5]. It combines the panoramic mapping
and orientation tracking on live camera images, performing in real-
time on current mobile phones. In the past it was used for various
applications, such as the creation of panoramic images and outdoor
Augmented Reality [1, 3]. In the tracking process, the FAST corner
detector [4] for feature point extraction is used, ranking the found
points by strength. A motion model estimates the orientation of the
camera in a new frame and projects the extents of the current frame
into the existing map, Features projected outside of this frame are
eliminated. For a valid tracking result, the number of remaining
features successfully matched against the existing map must ex-
ceed a given threshold, since the final rotation matrix is acquired
from these matches.

The rotation matrix is used to map the current frame into the
panoramic image. The corner pixel coordinates of the frame are
projected forward to define the area occupied by the current frame
in the panoramic image. Finally all pixels occupied are mapped

∗e-mail: georg.reinisch@student.tugraz.at
†e-mail: arth@icg.tugraz.at
‡e-mail: dieter@icg.tugraz.at

Figure 1: CPU-mapped image by the application of Wagner et al. [5] (above), GPU-
mapped image with image refinements proposed (below).

from the current frame via back-projection into the image and re-
trieving the corresponding pixel values and entering it into the
panoramic map.

3 GPU SHADER IMPLEMENTATION

The mapping process is completely independent for each individual
pixel, thus it can be parallelized heavily by using shader-programs
on the GPU. The GPU can perform operations that are extremely
costly on a CPU otherwise. In our context, this refers primarily to
(i) clearing certain areas from a panoramic image, (ii) image re-
finement requiring pixel blending, and (iii) enlarging the amount of
pixels, i.e. the image size, to be rendered.

Unfortunately on the GPU it is not possible to perform write
operation on an other texture than the one the shader is applied
to. Therefore we use a render-to-texture approach based on two
framebuffers for the panoramic map, applying a common method
also known as ”ping-pong technique”. For each frame, the role
of the texture is swapped such that one serves as an input and the
other one as an output texture. The shaders are always applied on
all pixels of the output texture. Every pixel is treated in its own
fragment shader program run, whether it lies in the area where the
current frame is projected or not. If the pixel lies in this area, the
color of the respective pixel of the camera image is stored at this
location, otherwise the pixel of the input texture is copied.

An optional optimization step is to only pass the area covered
by the actual frame to the shader, since the panoramic image will
only be updated in this area anyway. This reduces the maximal
number of shader runs of an e.g. 2048x512 pixels image from about
1 Mio. to about 75,000 (320x240 pixels), which is equivalent to a
reduction in computational complexity to about 7.5 % over a naive
implementation.

(i) Wiping: To remove unwanted areas, such as pedestrians or
cars, the panoramic image can be edited in real-time by wiping
over the panoramic image preview displayed on the mobile phone’s
screen. By specifying an area in a preview image of the panoramic
map, the coordinates are passed to the shader and the region around
that coordinate is cleared and marked as unmapped. A new frame
arriving can cover those cleared areas and fill the empty spots with
color information again (see Figure 2).



radius
coordinate to wipe
actual pixel coordinate

Figure 2: Exemplary wiping of all pixels −→t falling into a circular area of radius N
around the wiping coordinate −→w .

Table 1: Comparison of the average number of keypoints and matches for the origi-
nal approach [5] and different image refinement approaches proposed. Note that the
tracker stops to search for more matches as the number of 80 is reached.

Approach � # Matches � # Key Points
CPU

Standard Mapping 80.00 1000.30
GPU

a) No Refinements 80.00 1050.18
b) Brightness Corr. [2] only 80.00 1053.41
c) Frame Blending only 73.95 1028.54
d) Frame Blending + Brightness Corr. [2] 78.03 1030.62

(ii) Image Refinement: The exposure time of smartphone cam-
eras usually varies automatically and cannot easily be fixed. Arti-
facts arising thereby are sharp edges between earlier mapped re-
gions and newly mapped areas. Degendorfer [2] calculates the
brightness offset for tracked feature points and adjusts the newly
mapped pixels according to the average brightness difference esti-
mated. This solution is not ideal, as the best areas for comparing
brightnesses are homogenous regions rather than corners. Still the
approach can be performed at almost no additional computational
overhead, since the tracker inherently provides the matches.

To achieve even smoother transitions between different bright-
ness values, we propose a combination of the work of [2] and a
frame-based blending approach. The color values of newly mapped
pixels in the first frame are directly drawn from the camera image.
For all consecutive frames, pixels within an area represented by an
inner and an outer frame of the camera image are blended. Pix-
els at the image border (outer frame) are directly taken from the
panoramic map (input texture), the region inside the inner frame is
directly mapped from the camera image. A linear blending opera-
tion is used in the area between the frames along the direction of
the normal to the frame boundaries.

(iii) Large panoramic images: The GPU-based mapping ap-
proach allows to handle larger panoramic images as the CPU at a
negligible loss in render speed. By reducing the area passed to the
fragment shader in the optional optimization step mentioned above,
the size of the panoramic map does not have any influence on the
real-time frame rates at all. Likewise, the influence of the chosen
input image size of usually 640x480 on current mobile phones is
effectively negligible. A clear limitation for the GPU-mapping is
the limited texture size of a mobile phone’s GPU, this problem is
circumvented by splitting the panoramic texture into several parts
at the cost of additional program logic, however.

4 EXPERIMENTAL RESULTS

The image quality is tested by means of the image refinement ap-
proach, such as brightness offset correction and blending. The vi-
sual appeal is judged from a perceptual point of view for achieving
continuous results without seams and artifacts. The robustness of
the tracking process of each refinement approach and the render
speed performed for every approach is tested.

Panoramic image refinement: Figures 1 and 3 show the results
created by the original application [5] and our approach. In the
original approach, brightness differences and seams are visible. In

Figure 3: CPU-mapped image by the application of Wagner et al. [5] (above), GPU-
mapped image with image refinements proposed (below).

our approach, the seams as well as general differences in brightness
are smoothed by blending combined with the brightness offset cor-
rection [2]. As a result of the smoothing, the image gets a bit blurry.
However it emphasizes the impression of one artifact-free image.

Robustness: The quality of the panoramic image has a direct
impact on the quality of the tracker estimating the rotational mo-
tion, i.e. for an increase in image quality, a concurrent increase in
robustness is expected. We forward the GPU-mapped images to
the tracker and count the number of matching points for the current
camera frame. Subsequently this number is compared to the num-
ber of key points found using the CPU-mapped image (see Table 1).
For the FAST corner detection algorithm, the sharpness of corners
is important, thus blending has an adverse influence. Compensating
the brightness offset only [2] achieves a better result than those ap-
proaches that employ frame blending. On the contrary, strong dif-
ferences in brightness may force the tracker to loose its orientation
and cause the need to relocalize, however. In summary a combi-
nation of brightness correction and frame blending brings achieves
the most visually appealing results at a negligible loss in matching
performance.

Render Speed: We measured the averagely rendered frames
per second for each image refinement approach and for different
panoramic mapping sizes (2048x512 pixels and 4096x1024 pixels).
For the standard resolution of 2048x512 pixels, all image refine-
ment approaches run fluently with a frame rate higher than 20 FPS
on a Samsung Galaxy S2 smartphone, while the frame rate does not
significantly degrade for higher resolution panoramic images (e.g.
4096x1024 pixels).

5 CONCLUSION

In this work we proposed a GPU-based approach for mapping
panoramic images on mobile phones. Artifacts and brightness
seams are eliminated or strongly reduced. Our approach allows for
the creation of larger panoramic images in real-time and additional
functionality, such as the removal of undesired objects depicted.

REFERENCES

[1] C. Arth, M. Klopschitz, G. Reitmayr, and D. Schmalstieg. Real-Time
Self-Localization from Panoramic Images on Mobile Devices. In IS-
MAR, pages 37–46, 2011.

[2] C. Degendorfer. Mobile augmented reality campus guide. Master’s
thesis, Graz University of Technology, 2010.

[3] T. Langlotz, M. Zingerle, R. Grasset, H. Kaufmann, and G. Reitmayr.
AR Record & Replay: Situated Compositing of Video Content in Mo-
bile Augmented Reality. In OzCHI, pages 318–326. ACM, 2012.

[4] E. Rosten and T. Drummond. Machine learning for high-speed corner
detection. In ECCV, volume 1, pages 430–443, 2006.

[5] D. Wagner, A. Mulloni, T. Langlotz, and D. Schmalstieg. Real-Time
Panoramic Mapping and Tracking on Mobile Phones. In VR, pages
211–218, 2010.


