
Semantic Segmentation of Geometric Primitives in Dense 3D Point Clouds
Ana Stanescu*

Graz University of Technology
Philipp Fleck†

Graz University of Technology
Dieter Schmalstieg‡

Graz University of Technology
Clemens Arth§

AR4 GmbH

(a) (b) (c) (d)

Figure 1: Workflow from image and point cloud data to semantically labeled primitives used in a real-world application - (a) Input
RGB image from camera, (b) Dense 3D point cloud as captured by structure sensor, (c) Detection of semantic primitives using
RANSAC and SVM, (d) Overlay of primitives in a live-view augmented reality application.

ABSTRACT

This paper presents an approach to semantic segmentation and struc-
tural modeling from dense 3D point clouds. The core contribution is
an efficient method for fitting of geometric primitives based on ma-
chine learning. First, the dense 3D point cloud is acquired together
with RGB images on a mobile handheld device. Then, RANSAC
is used to estimate the presence of geometric primitives, followed
by an evaluation of their fit based on classification of the fitting
parameters. Finally, the approach iterates over successive frames
to optimize the fitting parameters or replace a detected primitive by
a better fitting one. As a result, we obtain a semantic model of the
scene consisting of a set of geometric primitives. We evaluate the
approach on an extensive set of scenarios and show its plausibility
in augmented reality applications.

Index Terms: Computing methodologies—Computer Vision—
Computer vision tasks—Scene Understanding; Computing
methodologies—Mixed / Augmented Reality; Computing
methodologies—Machine learning approaches—Kernel methods—
Support vector machines;

1 INTRODUCTION

Bringing semantic meaning to the world around us using computer
vision (CV) and machine learning (ML) is increasingly relevant for
practical applications, since mobile devices with depth sensors are
becoming widely available. The availability of high-quality dense
3D point clouds with registered RGB images allows for entirely new
levels of understanding our environment and opens new ways to
interact with it, especially for augmented reality (AR) applications.

Modeling real environments with polygonal meshes and other
geometric primitives is often referred to as structural modeling. 3D
depth sensors acquire the approximate shape of the underlying scene
in the form of a dense 3D point cloud. These point clouds have to
be further processed to generate meshed surfaces. Despite a high
computational effort, a meshed surface usually has no semantic
meaning. However, our everyday environment largely consists of
very few geometric primitives, mostly planes, boxes, cylinders and

*e-mail: ana.stanescu@icg.tugraz.at
†e-mail: philipp.fleck@icg.tugraz.at
‡e-mail: schmalstieg@icg.tugraz.at
§e-mail: clemens@ar4.io

spheres. This prior knowledge can support mesh generation in a
significant way. If a point cloud can be transformed into a set
of geometrically meaningful entities, AR interactions, like placing
virtual objects or automatic highlighting of object in the environment
become feasible.

Semantic modeling from real-world assemblies is supported in
some commercial modeling products, but usually requires substan-
tial manual interaction. For example Curvsurf1 requires manual
labeling of 3D point clouds. Based on the fit of a primitive, parts
of the geometric primitive are meshed, and the points are replaced.
Although this approach gives reasonable results, choosing geometric
primitives, scaling them and finally aligning them in 3D is tedious.
Clearly, the ability to automatically determine geometric primitives
in dense 3D point clouds has high potential for scientific and com-
mercial exploitation.

In the proposed method, we acquire dense 3D point clouds and
RGB images with a handheld mobile device. Using the points and
their approximate surface normal, we use random sample consen-
sus (RANSAC) to check for the existence of particular geometric
primitives, and we estimate their parameters. These parameters and
other key attributes of the fitted primitive are evaluated using a set
of binary support vector machines (SVM), to determine the quality
of the fit. Upon positive evaluation, the corresponding parts of the
point cloud are marked as assigned, and the primitive label can be
forwarded to the next frame. However, a negative evaluation by the
SVM can lead to replacing an ill-fitting primitive with a different
one. In this paper, we consider planes, spheres and cylinders, which
we found to be integral parts of everyday environments.

2 RELATED WORK

In recent years, structural modeling by fitting geometric primi-
tives has been investigated in various contexts. Examples include
robot grasping, collision detection [2, 14, 22], architectural model-
ing [10–12, 25], 3D reconstruction [17], and scene denoising and
compression [17]. Extensions to AR [16,23] place a stronger empha-
sis on real-time aspects and online acquisition of input data. Most
methods build on RANSAC [1] or Hough transforms [3] for robust
primitive fitting.

Early works on fitting geometric primitives like planes, spheres,
cylinders, cones and tori include [7, 14, 17], to some extent also
investigating their contextual relations. All these approaches are not
designed for real-time performance and are applied on a carefully

1Curvsurf: http://www.curvsurf.com/

http://www.curvsurf.com/


Figure 2: Overview of the proposed algorithm. Our approach is
subdivided into an initialization and a frame loop part, which handle
the startup and runtime phase properly. More information about the
individual parts are given in Sec. 3 through Sec. 5, respectively.

acquired 3D point clouds. In contrast, approaches using real-time
scene segmentation [2, 22] are used in mobile robotics.

With the increasing popularity of deep learning, recent approaches
for semantic segmentation of 3D data use convolutional deep belief
networks [24], convolutional neural networks (CNN) [8] and CNN
together with conditional random fields (CRF) [20]. These methods
use concrete object classes and require a large amount of data for
training. Despite recent advances, a generalized formulation for
objects consisting of geometric primitives is still missing.

Recent progress in simultaeneous localization and mapping
(SLAM) provides a real-time alternative to offline acquisition of
3D point models. Point clouds from SLAM are popular for in-
vestigating semantic segmentation in real-time, for example, for
planes [9] or planes, spheres and cylinders [13].

In this work, we apply an approach based on dense and noisy point
clouds. We use a segmentation-fitting-refinement pipeline [13, 14],
but applied over multiple frames to refine detected primitives. We
make use of ML to decide whether a shape has to be discarded or kept
at runtime. ML techniques such as SVM [4, 10] and probabilistic
graphical models [6, 26] have been used for structural modeling
of geometric primitives in the past. However, in our case, SVM
classification is used to discard outdated models. In contrast to
previous work [14], our method is designed to improve the structural
modeling over time. Our approach therefore closes a gap in research,
and we will show that it is particularly useful in an AR context.

3 OVERVIEW

In the following, we collectively refer to the 3D point cloud, the
related RGB image and the camera pose as a frame. We use the
terms cluster or segment for a set of 3D points, and we assume a
3D representation for all objects, unless otherwise noted. The point
clouds used in this work span a volume of approximately one cubic
meter. The working volume is a restriction of our acquisition setup,
and not an intrinsic restriction of the employed algorithms.

The goal of our method is to achieve a segmentation of a 3D scene
into geometric primitives from a stream of frames. The models
need to be improved over time and adapt to the newly discovered
geometry, as the acquisition device moves through the scene. This
scenario is relevant when using an AR system relying on SLAM,
where new parts of the scene are discovered opportunistically, and
the user expects quick system response.

While we do not rely on a consistent relationship between indi-
vidual 3D points, we assume the point clouds are dense and already
registered in a global coordinate system. The scenarios are static,
due to the nature of the sensors, and using SLAM implies that a
significant amount of noise is present. We assume indoor scenes
consisting of objects that can be approximated with the geometric
primitives supported in our system, but otherwise make no further
assumptions about the structure of the scene.

The proposed algorithm is shown in Fig. 2. In the initializa-
tion phase, we segment the 3D points in the first cloud based on
the orientation of their normals. As a result, we obtain segments

C = {c1, ...,cn} which are coherent w.r.t. their normal orientation.
We subsequently apply a fitting phase, considering all types of
3D primitives for each segment, choosing only a single primitive
which fits best. For this stage, we incorporate the number of inliers
and the surface normal orientation, obtaining a set of primitives,
P = {p1, ..., pn}. As this is the most computationally expensive part
of our algorithm, a full point cloud segmentation and fitting is not
repeated for the rest of the modeling process.

For all subsequent frames, the procedure is outlined in the frame
loop in Fig. 2. When a new frame is processed, the labels of the
primitives are propagated to the next frame, and points are assigned
to the previously detected primitives. More details are described in
Section 4.5.

The subsequent refinement of each primitive pk is performed by
means of non-linear optimization (see Section 4.3). Afterwards,
based on features describing the quality of the fit, SVM is used to
decide whether pk has an invalid or a valid fit. In the former case,
the primitive is discarded, and its inliers are released to the set of
unassigned 3D points. At the same time, primitives are merged
together based on proximity and on the similarity of the parameters
(further described in Sec 4.4).

At this stage of the algorithm, there exists a subset of 3D points
that do not belong to any primitive. These 3D points are again
segmented, and primitives are fitted to obtain a smaller set of new
primitives Pnew. The new primitives are merged to the already de-
tected ones, P = P∪Pnew; we refer to this step as residual points
handling in Fig 2 (more details to be found in Section 4.6.)

4 PRIMITIVE FITTING BASED ON RANSAC

The robustness of RANSAC suggests a naive approach to structural
modeling, which iteratively fits shapes to the point cloud, removes
the inliers and then repeats the procedure. In scenarios with high
outlier rates and many different objects present, the computational
expenses of running a naive version of RANSAC increase signifi-
cantly. RANSAC derivatives for higher outlier rates exist, but their
performance heavily depends on the domain, noise level, etc. We
avoid this problem by applying a pre-segmentation step.

4.1 Scene segmentation

Initialization. Segmentation of the scene using normal orienta-
tion is performed based on criteria constraining the angles between
the normals of a 3D point and its surrounding 3D points, thereby de-
limiting the segmentation onto objects and surfaces. Color has been
successfully employed in 3D object segmentation methods [6]. How-
ever, as man-made objects in indoor scenes present high variations
on color and illumination, we do not use color information.

The surface normals are calculated by locally fitting a plane to a
3D point’s nine nearest neighbors, and taking this plane’s orientation
as the normal for the 3D point. Previous work [19] introduced two
operators to create a segmentation of the 3D point cloud, denoted by
φ and Γ.

The normal analysis operators are used in a graph-based con-
nected component clustering phase. A threshold is applied to the
values of the operators, using 0.96 for φ and 0.0013 for Γ. These
thresholds have been empirically chosen for the expected noise lev-
els in the used datasets. After identifying the points describing edges
that separate segments, the edge-points are removed from the point
cloud, which is further transformed into an undirected graph. The
graph edges between 3D points represent their proximity. A con-
nected component algorithm is run on the graph, obtaining object
segments. All segments containing fewer points than 0.05% of the
entire point cloud are not considered further, as they are likely just
noise.



Remaining Points Handling At a later stage of our algorithm,
we employ segmentation again, however, on the remaining points
only. This time both convex and concave regions are penalized,
using a different operator, which is also based on the orientation of
the surface normals. This operator takes into account the smallest
angle between neighboring normals [22].

If the angle between the normals is smaller than a threshold,
a surface normal edge region has been found. The threshold is
set to 0.8, which corresponds to around 36.9 degrees. We set a
low threshold, so that noise does not introduce edges erroneously.
The edges are removed, and the rest of the points are clustered.
Clusters with fewer points than 0.04% of the whole point cloud are
not considered further, in a similar way to the first segmentation
method. The threshold is lower, because smaller clusters should also
be considered in order to find smaller surfaces as well.

The two segmentation criteria have different purposes. While the
first one more coarsely segments the point cloud into convex objects
in the main part of the algorithm, the second one is aimed at a finer
segmentation in the residual point handling step. This coarse-to-fine
strategy increases chances that primitives that have been previously
overlooked are finally identified.

4.2 Primitive fitting
A plane, a sphere and a cylinder are fit to each point cluster. For this
purpose, we employ a variant of RANSAC, M-estimator SAmple
and Consensus (MSAC) [21]. We use existing MATLAB functions
for fitting primitives to point clouds. Such functionality of fitting
different primitive types with RANSAC in a point cloud is also
provided by the Point Cloud Library [15]. However, the methods
provided by PCL only allow a one-time fit of a particular primi-
tive type to a point cloud; they do not allow incremental fitting or
adjustment over time.

Spheres or cylinders with a diameter larger than 80% of the
span of the point cloud bounding box are discarded, as any large
enough cylinder or sphere can resemble a plane at a high noise level.
Another check is performed regarding the distribution of the points
on the shape surface. The shape surface distribution of the inliers is
compared to a discrete uniform distribution of points on the surface
with the Hellinger distance. If this distance is below a threshold of
0.65, we assume the fit to be invalid. As the Hellinger distance takes
values between zero and one, the latter being the maximal distance,
this threshold only excludes extreme cases.

The final decision on the choice of the primitive is taken based
on the number of inliers, for which the normals on the point cloud
surface do not deviate from the normals on the primitive surface
by more than 18 degrees. This threshold is empirically chosen to
account for noise in the point cloud. This strategy includes the
curvature of the point cloud surface into the decision [17].

4.3 Primitive refinement
After having estimated the primitive parameters, we proceed to a
refinement step by performing non-linear optimization. The fit is
improved based on the estimated model and its inliers. This optimiza-
tion step accounts for non-linearity caused by distortions or noise
introduced by the sensor. Using the Ceres2 solver, we initialize the
optimization with the already estimated primitive parameters, and
then find the minimum iteratively, using the Levenberg-Marquard
algorithm. The cost function is defined as the squared distance from
the points to the 3D parametric model, modified by the Huber loss
function. The loss function slightly dampens the influence of points
with larger squared distances, making the fitting process more robust
to outliers.

The refinement is applied to all detected primitives. Then, the
inliers are reassigned based on their distance to the new model.

2Ceres-Solver: http://ceres-solver.org/

Figure 3: Label propagation and search radius expansion between
two consecutive frames: The inliers of the primitives detected in frame
k are projected onto the camera plane. Then, a mask of the convex
hulls of the inliers projections is created. The mask is used to define
the inlier candidates for each primitive in frame k+ 1 by projecting
the new points onto the camera plane from the pose of frame k+1,
moved backwards by an offset for increasing the search region.

4.4 Primitive merging
Because of occlusions or noise, parts of the scene might be over-
segmented, and certain primitives might be detected multiple times,
raising support from different clusters of inliers. Those clusters need
to be merged, and the merging strategy differs for the individual
primitive types.

For planes, we define a plane segment as the convex hull of the
inliers of a plane, projected onto the plane. In order to merge two
plane segments, not only their orientations need to be similar, but
the distance between them has to be small as well. We implement a
minimal 3D point-to-polygon distance [18]. The spheres are merged
based on the distance between their centers and their radii. In the
case of cylinders, their axis orientations, their radii, and the distance
between the line segments determined by their axes are compared.

4.5 Propagation and search radius expansion
We aim to propagate the labels of the detected primitives to the
next frame, without needing to refit the primitives again. Unfortu-
nately, the stream of point clouds usually does not include explicit
correspondences between individual points. We propose projecting
each primitive’s class label onto the image plane [19] and using
this projection as a cone-shaped region of interest for finding inlier
candidates in the next frame. The projection area of the convex hull
is also slightly increased by artificially moving the camera position
backwards by a fixed offset, assuming there is little optical flow in-
between the frames. The points inside the 3D search cone resulted
from the projected convex hull are potential inliers. This procedure
is sketched in Figure 3. The set of inliers is recalculated based on
the distance from the candidates to the model. After this step, the
set of primitives and inliers have been identified in a new frame.

4.6 Residual points handling
At each frame, there are points that remain unassigned to a model
left from previous steps from the algorithm. This might either be
due to their assignment to very small clusters, to their lack of fit
to any primitive, or to the fact that corresponding primitives were
discarded by the classifiers as invalid.

We repeat the segmentation-primitive fitting steps described in
Sections 4.1 and 4.2 in these regions. Here, the segmentation method
is different, not only concerning the edge criterion, but also because
small clusters that were previously ignored are taken into considera-
tion as well. The resulting primitives are merged with the already
found primitives.

5 PARAMETER CLASSIFICATION USING SVM
During acquisition, objects are usually only partially visible to the
sensor setup (i.e., the setup only captures a part of the scene). In

http://ceres-solver.org/


certain cases, especially at the beginning of a scanning session, this
leads to the detection of wrong primitives, as only little data is
available. Therefore, we need a criterion to decide when to discard
misfits at a later stage, such that a refitting step can be rerun in this
particular region.

Deep learning would likely be able to handle such a challenging
decision, but training requires vast amounts of largely noise-free
training data. Such databases are difficult to obtain without excessive
cost. We therefore decided in favor of SVM as a more traditional
classification technique, which can be applied on a standard CPU
hardware with very manageable training effort. We use an SVM
set that, from five features describing the fit of a model, evaluates
whether a primitive should be discarded.

Characterizing primitives Each primitive fit is described by
five features, which are inferred from the points assigned to the
primitive. A sample sk is obtained as a 5D vector
sk = {#inliers, rmse, #inliers nde, mnde, hellinger dist}.

1. #inliers: the number of inliers of a primitive. Primitives with
over 10.000 inliers are not classified at all, as they are consid-
ered reliable.

2. rmse: the root mean square error, i.e., mean distance from
the inliers to the fitted model, normalized by the maximum
allowed distance.

3. #inliers nde: the number of inliers coherent with the shape
curvature. Checking whether the orientation of the normals of
a primitives inliers agrees with the orientation of the normals
on the surface of the primitive is a criterion for the goodness
of the fit [14, 17]. We perform this check, counting how many
inliers’ normals deviate by < 18◦ from the normals in the
points, obtained by the projection of the inliers on the model
surface.

4. mnde: the mean normal deviation error, i.e., the mean of the
cosines of the deviation angles between the surface normals at
the position of the inliers and the primitive’s normals.

5. hellinger dist: the Hellinger distance as a uniformity measure
of the point distribution on the shape surface. As large cylin-
ders or spheres can approximate planar regions only locally,
the distribution of the inliers on their surface is an indicator
of their fit. We calculate this in terms of the Hellinger dis-
tance between the discrete 2D distribution of the inliers on the
primitive surface and a discrete 2D uniform distribution on the
primitive surface.

Training SVM sets We generate training data by artificially
creating a copy of a scene with color-coded primitives and aligning
it with the real-world point cloud. We lay out a scene on scale paper
and recreate it in Blender. After alignment, we transfer the labels of
individual primitives, which are color coded, to the points closely
falling onto these primitives. Cylinder caps are labeled as planes, as
the expected behavior of the algorithm is to identify cylinder caps as
plane models. Examples are shown in Figure 4.

The samples are generated by running the algorithm with an
update mechanism in a two-frame cycle. We perform a complete
segmentation and fitting on each second frame, followed by a frame
update and primitive refinement. Finally, we compute the features
for each primitive. This procedure is equivalent to restarting the
algorithm at each second frame. We employ this restarting scheme to
ensure that is sufficient variation and little interdependence between
the detected primitives.

For learning a particular primitive, we force-fit said primitive to
the data, while ignoring other primitives during this step. The fitted
model is compared to the type of the real underlying primitive by
counting inliers whose color labels are consistent with the desired
primitive type. If the two types are the same, then the label of the
sample is set to one, otherwise it is set to zero. We repeat this step

Figure 4: Top left: real world dataset image. Top right: unlabeled real
world dataset point cloud. Bottom left: real world dataset point cloud
after labels transfer. Bottom right: label transfer between artificial and
real datasets.

Classifier Kernel Feature # Training # Support Accuracy
set Samples Vectors

Plane rbf {1, 3, 4, 5} 3008 507 79.85%
Sphere poly. {1, 2, 3, 4} 1491 30 97.57%
Cylinder rbf {1, 2, 3, 4, 5} 1582 258 89.3%

Table 1: SVM classifiers properties and accuracy.

for all types of primitives, generating a large set of positive and
negative samples.

From the labeled dataset, the SVM learns to classify correctly and
incorrectly fitted primitives. The values of the features are scaled to
the interval [0,1] with respect to the maximum value per feature.

6 EXPERIMENTAL EVALUATION

In our evaluation, we first trained SVM sets and evaluated their
performance, in order to assess the complexity of the problem and
the suitability of certain feature combinations. Then we applied the
learned SVM sets in our algorithm on a set of test scenarios.

6.1 Acquisition setup
Since our approach is aimed to work on portable devices, we test it
on an Apple iPad equipped with a structure.io3 sensor. This setup
provides registered point clouds along with each frame. The sensor
uses infrared structured light for retrieving the depth map, and the
point back-projection and registration is done locally on the tablet.
The datasets encompass between 100 and 300 frames, with point
clouds of up to 30.000 points per frame.

6.2 SVM performance
For each primitive type, we perform five-fold cross-validation and
train the binary SVM. We experimented with radial basis kernels,
third-degree polynomial kernels and linear SVM, as well as with
six configurations of features, selecting subsets of the five available
features to find the best combination of features for a particular prim-
itive type. The following configurations of features were evaluated:

{1,2,3,4,5} {3,4,5} {1,3,4,5} {1,3,4} {1,2,3,4} {3,4}

The best-performing configurations identified for the individual
primitives were chosen for our system. Details about the configura-
tions and the classifiers are listed in Table 1. The best performing
configurations lead to around 79% accuracy for planes, 97% for
spheres and 89% for cylinders in the five-fold cross-validation. The

3Structure-IO Sensor: https://structure.io/

https://structure.io/


Dataset Primitive Precision Recall Dataset Primitive Precision Recall

Dataset #1 Planes 0.874 0.997 Dataset #5 Planes 0.224 1.000
Spheres – – Spheres 0.959 0.321
Cylinders 0.750 0.747 Cylinders 0.255 0.851
Total 0.820 0.886 Total 0.281 0.623

Dataset #2 Planes 0.976 0.940 Dataset #6 Planes 0.914 0.841
Spheres 1 1 Spheres 1 0.993
Cylinders 0.720 0.714 Cylinders 0.752 0.755
Total 0.928 0.901 Total 0.901 0.849

Dataset #3 Planes 0.928 0.995 Dataset #7 Planes 0.797 0.878
Spheres – – Spheres – –
Cylinders 0.743 0.741 Cylinders 0.624 0.716
Total 0.850 0.882 Total 0.780 0.865

Dataset #4 Planes 0.910 0.919 Dataset #8 Planes 0.772 0.814
Spheres 1 1 Spheres 1 0.989
Cylinders – – Cylinders 0.770 0.719
Total 0.899 0.926 Total 0.788 0.821

Total Planes 0.796 0.921
Spheres 0.994 0.859
Cylinders 0.623 0.752

Table 2: Results of experiments in terms of average precision and
recall for each dataset and overall.

number of support vectors give an indication about the complexity
of the problem solved by the SVM. While the number of support
vectors is low for spheres, it is considerably higher for cylinders.

For planes, almost 17% of the samples are required. We attribute
this to a large variation in the samples used for training, and a
yet incomplete set of suitable features to describe planes properly.
Investigating other features to describe the quality of the fit of a
primitive could improve the method.

6.3 Semantic modeling results

Using the trained SVM set, we tested our algorithm on a total of eight
scenes with known object parameters. The performances obtained
are listed in Table 2. Despite the decent performance of the SVM
for cylinders in our five-fold cross-evaluation, cylinders show the
poorest performance in practice. The reason is likely that cylinders
can reasonably well approximate both spheres and parts of planes,
leading to ambiguities in certain regions. Spheres reach a high
precision, which is attributed to a sphere’s specific curvature, which
makes it harder to mistake a sphere for a cylinder and even harder to
mistake for a plane. Some exemplary images from our algorithm on
the datasets are shown in Figures 8.

In Figure 7, the average-filtered precision and recall achieved
when running the algorithm on each individual dataset is depicted.
The reference models are created by manually adjusting the prim-
itives fit to the last frame of each dataset. One can see that both
precision and recall are low in the beginning and steeply increase
over the first few frames, as the point clouds get denser, and new
geometry is revealed. Precision tends to stay at the same value or
to slightly decrease. The algorithm tries to fit different primitives to
newly discovered or freed areas in the point cloud, while some of
these fitted primitives are not correct. Recall increases as expected,
reflecting the successful retrieval of the primitives over time.

The effect of the set of SVM is exemplified with selected frames
of dataset #3, shown in Figure 5.

(Frame #4) (Frame #10) (Frame #14)

Figure 5: Frames from dataset #3 with superimposed detected primi-
tives, showing plane primitives discarded by the SVM and correctly
replaced by refitting a cylinder in later frames.

(Frame #70) (Frame #91) (Frame #93) (Frame #104)

Figure 6: Frames from dataset #5 with superimposed detected primi-
tives, showing the unstable behaviour of the algorithm when dealing
with challenging shapes.

7 DISCUSSION

7.1 Datasets
Because of the large variation of related approaches mentioned in
Section 2, it is challenging to compare the results of the proposed
approach to results of existing methods. Many methods [10, 14,
17, 25] are designed to work on a single frame, without iteratively
updating the detection in a stream scenario. Some methods segment
objects without assigning them to a certain class [2, 19], while many
ML-based methods perform an instance-based segmentation [8, 20,
24], rather than structural modeling using geometric primitives. The
most similar approach to ours [13] focuses on sparse point clouds,
which are not suitable for the segmentation step employed in this
work, making them difficult to compare. We do not think that a
comparison to a segmentation method using different classes [10,14,
16, 17, 23, 25] would be meaningful.

As there are no publicly available suitable dense point cloud
datasets with labeled 3D primitives, we were forced to create our
own set of test sequences. As a result, comparing the performance
of our approach to others in the literature remains challenging. To
improve this situation, we will release our datasets to the public for
further research.

7.2 Interpretation
Upon closer investigation, the more regular certain shapes are, the
easier it becomes to represent them as geometric primitives. When
the geometry becomes more complex, the algorithm tries to model
it with the known primitives, and it becomes locally unstable in-
between frames, oscillating between primitive types. This behavior
is shown in Figure 6, running on dataset #5. The lowest precision
and recall performance is achieved, because the shapes of the two
bottles are ambiguous and challenging to model with the primitives.
In this case, the algorithm discards and refits shapes to the bottles,
as all types partially fit, a fact that is reflected in the precision. A
solution for this instability would require adding more primitive
types or employing a hybrid method [14] that models object details
as meshes.

Like any other sensor based on structured light, our sensor has
difficulties dealing with reflections or transparent objects. This
can also be seen in Figure 6, where the neck of the bottle from
dataset 5 is not captured by the sensor due to its transparency. A
thorough analysis on the capabilities of the sensor is described in
the literature [5].

In datasets #2, #7 and #8, the edges of the stacked books are
partly merged together into the same plane. This behavior can be
explained by the lack of context, which forces the algorithm to rely
only on the geometry. A possible improvement for these cases is
the addition of contextual relations or specific constraints between
primitives [9].

One drawback of our current implementation is its inability to
model small objects. This shortcomiung is mainly caused by the
segmentation step based on the orientation of surface normals. When
modeling small spheres and cylinders, even with a locally smooth
surface, the angles between their normals are above the acceptable
thresholds for performing reliable segmentation. The effect is that
inliers are categorized as cluster edges instead of surfaces. Conse-
quently, those points are not taken into consideration for primitive



(Dataset #1) (Dataset #2) (Dataset #3) (Dataset #4) (Dataset #5) (Dataset #6) (Dataset #7) (Dataset #8)

Figure 7: Average-filtered precision and recall of the primitive fits in datasets #1-#8 over time.

(Dataset #1) (Dataset #2) (Dataset #3) (Dataset #4) (Dataset #5) (Dataset #6) (Dataset #7) (Dataset #8)

Figure 8: Examples of fit primitives in datasets #1-#8, with various object configurations.

fitting. A possible improvement for small primitives is the use of
adaptive thresholds for the geometric segmentation, dependent on
cluster scale and expected noise level. Such an adaptive thresholding
will likely improve the overall performance of the algorithm, as
the segmentation step has a crucial influence on the detection of
primitives.

Although our current implementation is running close to real-time
on desktop hardware, we admit that it cannot deliver interactive rates
on mobile devices yet. This is mainly a software engineering limita-
tion, owed to a heterogeneous setup of experimental tools without
proper integration and optimization. Nothing in our implementation
precludes an optimized version which is real-time capable on mobile
hardware.

8 CONCLUSION

In this paper, we present an approach for structural modeling of
indoor static scenes using planes, spheres and cylinder as geomet-
rical primitives. The method is capable of inferring the missing
geometry from point clouds in an incremental way. Outdated fits
are discarded automatically by an SVM classifier, improving the
modeled structure of the scene over time.

Being suited for a stream of point clouds coming from a mobile
device, the system outputs a compact representation of the scene as a
set of parametric models, ready to be further used by AR applications.
With this thought in mind, further work includes improving the
algorithm for real-time performance on mobile devices.

ACKNOWLEDGMENTS

The authors wish to thank Rafael Roberto for his efforts. This work
was partially funded by FFG grant 859208.

REFERENCES

[1] M. A. Fischler and R. C. Bolles. Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography. In Readings in computer vision, pp. 726–740.
Elsevier, 1987.

[2] D. Holz, S. Holzer, R. B. Rusu, and S. Behnke. Real-time plane
segmentation using rgb-d cameras. In Robot Soccer World Cup, pp.
306–317. Springer, 2011.

[3] P. V. Hough. Method and means for recognizing complex patterns,
Dec. 18 1962. US Patent 3,069,654.

[4] J. Huang and S. You. Detecting objects in scene point cloud: A
combinational approach. In 3DTV, pp. 175–182. IEEE, 2013.

[5] M. Kalantari and M. Nechifor. Accuracy and utility of the structure
sensor for collecting 3d indoor information. Geo-spatial information
science, 19(3):202–209, 2016.

[6] H. S. Koppula, A. Anand, T. Joachims, and A. Saxena. Semantic
labeling of 3d point clouds for indoor scenes. In NIPS, pp. 244–252,
2011.

[7] Y. Li, X. Wu, Y. Chrysathou, A. Sharf, D. Cohen-Or, and N. J. Mitra.
Globfit: Consistently fitting primitives by discovering global relations.
In ACM Transactions on Graphics (TOG), vol. 30, p. 52. ACM, 2011.

[8] J. McCormac, A. Handa, A. Davison, and S. Leutenegger. Semanticfu-
sion: Dense 3d semantic mapping with convolutional neural networks.
In Robotics and Automation (ICRA), 2017 IEEE International Confer-
ence on, pp. 4628–4635. IEEE, 2017.

[9] T. Nguyen, G. Reitmayr, and D. Schmalstieg. Structural modeling
from depth images. TVCG, 21(11):1230–1240, 2015.

[10] S. Ochmann, R. Vock, R. Wessel, and R. Klein. Automatic reconstruc-
tion of parametric building models from indoor point clouds. Comput-
ers & Graphics, 54:94–103, 2016.

[11] S. Oesau, F. Lafarge, and P. Alliez. Indoor scene reconstruction using
feature sensitive primitive extraction and graph-cut. ISPRS Journal of
Photogrammetry and Remote Sensing, 90:68–82, 2014.

[12] F. Remondino, D. Lo Buglio, N. Nony, and L. De Luca. Detailed
Primitive-Based 3d Modeling of Architectural Elements. ISPRS -
International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, pp. 285–290, July 2012. doi: 10.5194/
isprsarchives-XXXIX-B5-285-2012

[13] R. Roberto, H. Uchiyama, J. P. Lima, H. Nagahara, R. Taniguchi, and
V. Teichrieb. Incremental structural modeling on sparse visual slam.
IPSJ Transactions on Computer Vision and Applications, 9(1):5, 2017.

[14] R. B. Rusu, N. Blodow, Z. C. Marton, and M. Beetz. Close-range scene
segmentation and reconstruction of 3d point cloud maps for mobile
manipulation in domestic environments. In IROS, pp. 1–6. IEEE, 2009.

[15] R. B. Rusu and S. Cousins. 3D is here: Point Cloud Library (PCL). In
IEEE International Conference on Robotics and Automation (ICRA).
Shanghai, China, May 9-13 2011.

[16] R. F. Salas-Moreno, B. Glocken, P. H. Kelly, and A. J. Davison. Dense
planar slam. In ISMAR, pp. 157–164. IEEE, 2014.

[17] R. Schnabel, R. Wahl, and R. Klein. Efficient ransac for point-cloud
shape detection. In Computer graphics forum, vol. 26, pp. 214–226.
Wiley Online Library, 2007.

[18] P. Schneider and D. H. Eberly. Geometric tools for computer graphics.
Elsevier, 2002.

[19] K. Tateno, F. Tombari, and N. Navab. Real-time and scalable incre-
mental segmentation on dense slam. In IROS, pp. 4465–4472. IEEE,
2015.

[20] L. P. Tchapmi, C. B. Choy, I. Armeni, J. Gwak, and S. Savarese.
Segcloud: Semantic segmentation of 3d point clouds. arXiv preprint
arXiv:1710.07563, 2017.

[21] P. H. Torr and A. Zisserman. Mlesac: A new robust estimator with
application to estimating image geometry. CVIU, 78(1):138–156, 2000.

[22] A. Ückermann, C. Elbrechter, R. Haschke, and H. Ritter. 3d scene
segmentation for autonomous robot grasping. In IROS, pp. 1734–1740.
IEEE, 2012.

[23] J. Ventura and T. Hollerer. Online environment model estimation for
augmented reality. In ISMAR, pp. 103–106. IEEE, 2009.

[24] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao. 3d
shapenets: A deep representation for volumetric shapes. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp.
1912–1920, 2015.

[25] J. Xiao and Y. Furukawa. Reconstructing the worlds museums. IJCV,
110(3):243–258, 2014.

[26] X. Xiong and D. Huber. Using context to create semantic 3d models of
indoor environments. In BMVC, pp. 1–11, 2010.


	Introduction
	Related work
	Overview
	Primitive fitting based on RANSAC
	Scene segmentation
	Primitive fitting
	Primitive refinement
	Primitive merging
	Propagation and search radius expansion
	Residual points handling

	Parameter classification using SVM
	Experimental evaluation
	Acquisition setup
	SVM performance
	Semantic modeling results

	Discussion
	Datasets
	Interpretation

	Conclusion

