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Abstract— The accurate registration of a robotic total station
with respect to a given CAD model is a crucial task in the
construction industry. Common registration techniques rely on
a reference network of control points in the CAD model. One
must establish correspondences between control points in the
CAD model and measured points in the field. Usually physical
markers or natural points of interest are selected as control
points. We present a user-guided algorithm for simple and
efficient registration of a robotic total station with a CAD model
in indoor environments without the need for control points. The
user interaction is reduced to selecting a local Manhattan-like
corner structure for initial model alignment; accurate registration
of the device is carried out automatically. Our algorithm relies
on angle and distance measurements only and, therefore, is not
limited to vision based robotic total stations. In particular, we
propose a new algorithm for robust Manhattan corner extraction.

Index Terms—Mechatronics and Robotics, Motion and Servo
Control

I. INTRODUCTION

A robotic total station (RTS) is used for accurate measure-
ments of angles, distances and 3D points [1]; a modern RTS
combines an electronic theodolite, an electronic distance meter
(EDM) and one or more cameras. The simplified geometric
model with one camera and no parallax effects between the
components is shown in Fig. 1.

An RTS provides measurements in a local coordinate frame.
Measurements from multiple positions must be linked together
by registering the measurements with respect to a common
coordinate system. Common registration techniques rely on
correspondences between control points. Usually, physical
markers or natural points of interest are selected as control
points. Physical markers can be reflective targets with known
measurement properties or non-reflective targets like geodetic
marks or cast metal disks. Common natural measurement
targets are building corners, edges or steeples. They have a
high recall value and avoid physical installation of targets.

A common task of as-built and indoor surveying is the reg-
istration of an RTS with respect to a CAD model. Especially
when planning or documenting installations, planning recon-
structions or placing physical markers for assembly drills, fast
RTS registration without dedicated control points is desired.

This work was funded through the COMET program No. 843272 by the
Austrian FFG.
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Fig. 1: Idealized geometric model of a calibrated RTS as used by Klug
et al. [2]. The spherical coordinate frame of the RTS measurements,
the EDM frame and the camera coordinate frame are aligned in this
particular model.

In this work, we address the problem of semi-automatic
reflectorless registration of an RTS with respect to a polyg-
onal 3D model for indoor environments. The registration is
performed with a sparse 3D point cloud scan to keep the
measurement duration to an acceptable level.

Our algorithm reduces the required user interaction, but
retains an accurate registration without reflective targets. The
proposed approach simplifies the registration and relaxes the
accuracy constraints for initial measurements. We avoid com-
putationally expensive calculations to allow real-time imple-
mentation on embedded systems and mobile devices.

II. RELATED WORK

Without the claim of completeness, we provide a review of
published work about reflectorless RTS and model registration.

Uren and Price [1] provide an introduction to basic survey-
ing methods and devices, including the design and handling of
RTS, error sources and error correction methods. Coaker [3]
analyzes reflectorless measurement methods of RTS in terms
of accuracy, precision and reliability.

Klug et al. [2] apply line and plane approximations to
measure man-made corner structures manually. However, RTS
registration is not addressed in their work.

The iterative closest point (ICP) algorithm and it variants are
widely used practical solutions to the object registration prob-
lem. The algorithm was first introduced by Chen and Medioni



[4], and Besl and McKay [5]. Mehdi [6] provides a compre-
hensive study of rigid body registration and error evaluation
using the ICP algorithm. Tam et al. [7] and Bellekens et al.
[8] provide a general introduction to point cloud registration;
Salvi et al. [9] provide a review of range image registration
methods. However, to the best of our knowledge, no complete
system for semi-automatic reflectorless registration of an RTS
with respect to a polygonal model has been proposed so far.

We describe robust initialization and ICP sample selection
for the proposed problem and an optimization for the measure-
ment order. In this work, we use plane correspondences from
local Manhattan-like structures to initialize the registration
flow. Hulik et al. [10] present a robust plane extraction
algorithm based on the Hough transform [11]; Schnabel
et al. [12] use the random sample consensus (RANSAC)
framework for robust shape extraction. Bueno et al. [13] use
geometric keypoint descriptors for the coarse registration of
dense point clouds. Bosché [14], [15] uses point and plane
correspondences in combination with ICP for the registration
of terrestrial laser scans and CAD models. However, the
low measurement rates of RTS require robust algorithms for
sparse point clouds, whereas all methods discussed above are
designed for dense point clouds and do not perform well with
the desired point cloud sparsity.

Our system is closely related to the system proposed by
Bosché [14], [15], but tailored towards RTS registration. The
initialization of our algorithm is based on the plane estimation
algorithm proposed by Nguyen et al. [16] to reduce the re-
quired user interaction and number of measurements; Nguyen
et al. combine a mobile EDM with a real-time SLAM system
to extract 3D models from sparse 3D point measurements. In
particular, the authors apply graph-based point segmentation
and expectation maximization (EM) plane fitting. We modified
the proposed methods for RTS and realistic indoor scenarios,
for which image-based segmentation is not applicable due to
the frequently occurring low contrast regions.

III. RTS REGISTRATION

Registering an RTS with respect to CAD model can be reduced
to a generic 3D registration problem. Traditional 3D regis-
tration algorithms use three or more point correspondences
to estimate the pose between two models [17]. The ICP
algorithm and it variants are widely used for automatic object
registration, but require carefully selected sample points and
good initialization, especially when using sparse point clouds.

Our algorithm can determine the registration without dedi-
cated control points by using local geometry for initial pose
estimation and an ICP based sampling and refinement step.
Alternatively, the initial pose can be roughly defined by the
operator using the CAD model.

Fig. 2 compares the manual registration workflow with our
assisted approach, which uses local geometry instead of con-
trol points. When using manual registration, the user measures
points with the RTS and specifies correspondences in the CAD
model. When using the assisted method, the user positions
the RTS, roughly specifies the initial pose in the CAD model,
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Fig. 2: Manual registration workflow (left) compared to the workflow
of the proposed CAD based registration (right). The manual workflow
requires visible and CAD-registered control points, whereas control
points are optional for the proposed method.

and triggers the registration; measurement samples are taken
automatically to refine the initial registration.

A. Manual RTS Registration

When using manual RTS registration, the user is responsible
for measuring and assigning control points. The steps for this
approach include: a) place the total station in the environment,
b) load the model, c) create control points in the model, d)
measure the control points, e) assign measured and model
control points, and f) calculate the current pose of the total
station with respect to the model frame. In the simplest case,
this problem can be mathematically formalized as point cloud
fitting problem with known point correspondences, using a six
degree of freedom (DOF) Euclidean transformation.

Let x′i be a CAD point, xi be the corresponding measured
3D point, and {R, t} be the relative Euclidean transformation
between the measurement frame and the CAD frame. Then,
the relative transformation between the two frames is given by

x′i = R ·xi + t {R, t}= argmin
R,t

m

∑
i=1
||R ·xi + t−x′i||2 (1)

with the point correspondence count m ≥ 3. The problem is
known as best rigid body transformation in least square sense
with a well-established closed form solution by Horn [18].

B. Assisted RTS Registration

The proposed assisted RTS registration is an iterative method,
which requires good initial values for the rotation R and
translation t for fast and robust registration. Our method
supports the user in defining an initial pose and then refines
the result automatically. The most simple, yet robust method
is defining the initial pose manually in the CAD model.

Another pose initialization method is measuring a local
corner structure and matching its pose with respect to a
selected CAD region. An RTS provides accurate single point
measurements with a low sampling rate. Therefore, we ex-
plicitly avoid dense point cloud scans to keep the registration
reasonable fast. While the ICP is an established solution for
the registration of point clouds and meshes, the sparsity of the



Algorithm 1: Peak detection algorithm with non-
maximum suppression of successive points. The non-
maximum suppression in this algorithm is limited to a
single subsequent edge. The angle threshold is set to
αthr =

π

4 (experimentally determined).

1 function peakfind
Input : angles := {α̃i}
Output: peak indices

2 state s := NO PLAT EAU
3 foreach i in {1,Ns} do
4 if s = NO PLAT EAU AND α̃i > αthr then
5 APPEND i to peak indices
6 s := PLAT EAU
7 else
8 s := NO PLAT EAU
9 return peak indices

measurements is critical for ICP based pose estimation without
providing further user input1. Multiple initial pose candidates
would be required for a robust pose estimation, which comes
at the expense of additional computation time.

Our algorithm is based on the work of Nguyen et al. [16],
who use sparse 3D point clouds, graph based segmentation and
EM for robust plane detection. However, our setup requires
certain modifications: 1) The mobile EDM is replaced by an
RTS. Hence, no SLAM system is required for connecting
multiple measurements. 2) 3D points can be measured with
higher accuracy and with a predefined scan order. This reduces
the optimization complexity and allows for a more robust algo-
rithm. 3) Realistic indoor scenarios and usage on construction
sites demand high stability with low contrast images. Hence,
the point segmentation proposed by the authors cannot be used.
4) Pose estimation of a mesh and a point cloud is not part of
the original algorithm and must be addressed separately.

In the following, we provide modifications to the method
proposed by Nguyen et al., which lead to a simple, yet robust
method for Manhattan-like corner pose estimation for RTS in
low contrast scenarios. The RTS camera is only used to steer
the RTS to the area of interest, but not for segmentation. The
camera can be removed completely for setups with different
hardware control interfaces.

C. Local Manhattan-Like Corner Estimation With Ordered
Sparse Point Clouds

First, the proposed algorithm defines a measurement path for
the RTS for creating a set of ordered 3D point measurements.
Using the measured point set, plane detection is applied to
classify the sparse scan of a local Manhattan-like structure
into following three categories: single wall, 3D edge with two
visible planes, or 3D corner with three visible planes. In the
current work, only the latter is accepted as valid measurement.
The complete plane extraction algorithm consists of following
steps: 1) Automatically measure the local area of a target using

1We assume an EDM update rate of 0.5 . . .20 Hz for repeated measurements
of the same target, but lower update rates for different targets [1], [19].
We assume an acceptable sample count of Ns ≤ 40 points (experimentally
determined, indoor).

Algorithm 2: Simple greedy non-maximum suppression
based on the size of the point groups. List boundary
handling is omitted for reasons of readability.

1 function nonmaximumsup
Input : peak indices
Output: f iltered peak indices

2 state s = NO PLAT EAU
3 var idxprev = 0
4 foreach idx in peak indices do
5 if (idx - idxprev) > 3 then
6 APPEND idx to f iltered peak indices
7 idxprev = idx
8 return f iltered peak indices

a circular movement, 2) create initial point set groups, 3) refine
groups using EM, and 4) extract planes using the RANSAC
framework for each point group. Fig. 1 shows the circular scan
path, the projected scan path at the measured corner, and an
exemplary RTS control user interface (UI) for the algorithm.

Discrete sample points define a sparse point cloud around
the current target. The points are recorded by an RTS using a
circular EDM motion. The set of RTS angle control parameters[
θi ϕi

]T is defined by[
θi
ϕi

]
=

[
θ0
ϕ0

]
+ r ·

[
cos(ωi)
−sin(ωi)

]
, i = 1...Ns, ωi = i

2π

Ns +1
(2)

where θ0 and ϕ0 are the horizontal and vertical angle of
the center of the measurement, θi and ϕi are the spherical
coordinates of sample point xi, and Ns is the sample count. By
steering the RTS approximately to the corner, the measurement
center angles θ0 and ϕ0 are implicitly defined by the current
RTS pose. The radius r defines the swing of the spherical
RTS control parameters for the local measurement. When
defined visually, the angle between the center ray and the back-
projected ray of a user defined image point is used. However,
r can also be derived from a predefined spherical bounding
box at the corner, using an initial measured EDM distance,
which further reduces the required user input.

The proposed classification accepts simple Manhattan-like
structures with one, two or three main planar areas.

The point cloud, consisting of Ns measured points xi, is
interpreted as closed polygon K = {x1,x2, . . . ,xNs,x1} for pre-
processing and initial point grouping. Besides image-based
segmentation, Nguyen et al. use EDM distances for initial
point grouping. In contrast, RTS provide not only distances,
but 3D point measurements, which we use for segmentation.

Let the interior angle αi be the angle between two successive
measured points, interpreted as 3D polygon vertices. Then, αi
is given by

αi = arccos(vi ·vi−1) vi =
xi+1−xi

||xi+1−xi||
(3)

where vi is the direction from vertex xi to vertex xi+1. To
identify initial coplanar point groups, we subtract a systematic
angle αs according to

α̃i = max({|αi|−αs,0}) αs =
2 ·π

Ns +1
(4)
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Fig. 3: Manhattan-like structure detection. Once detected, the initial
RTS registration with respect to the CAD model is done by aligning
a local coordinate system of the measured and selected structure. The
local coordinate axes are automatically extracted from both, the CAD
model and the measured point cloud.

The systematic angle αs describes the angle between two
consecutive edges for a perpendicularly measured, planar
target. We perform peak detection of the absolute values of the
remaining angles with downstream non-maximum suppression
of the detected plateaus. The peak detection algorithm is
shown in Alg. 1. After detection, groups with less than three
points are joined using the greedy iterative algorithm shown in
Alg. 2. EM optimization is applied for robust plane detection.
In the Expectation step, measurements are assigned to coplanar
point groups. However, the sorted input allows for k-means
clustering in the Expectation step rather than using Gaussian
Mixture Models as proposed by Nguyen et al. [16]. Let the
plane Π j be the estimated geometric model of point group j.
The initial likelihood p of a homogeneous measurement point
x̃i to belong to the plane Π j is obtained from Alg. 2. In the
subsequent iterations, the likelihood is updated using

p(x̃i ∈Π j|Π j) =

1, j = argmin
k

(ΠT
k · x̃i), | j−m| ≤ 1

0, otherwise
(5)

where Πk is a 4×1 vector which contains the plane parameters
for the co-planar point group k. In the previous iteration, point
xi was assigned to plane Πm. In the Maximization step, plane
fitting and merging of similar planes is applied. However,
in all algorithm steps, only connected groups are considered.
This reduces the effects of invalid inter-class point assignments
and invalid plane merging. The benefits of the ordered point
clouds can be compared to the benefits of organized point
clouds over unorganized point clouds, as discussed by Trevor
et al. [20]. Fig. 3 shows an exemplary measurement. Different
representations of the Manhatten-like structure are used for
the individual algorithm steps. Hence, the local structure is
represented as single mesh, connected planes, polygons, or
grouped points.

From the proposed plane detection, three planes are selected
and classified as a corner structure. First, the most prominent
plane Πi is selected, using the inlier count N(i) of the plane
estimation. Then, the two remaining planes Π j and Πk are
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selected by maximizing the span and inlier count of the three
planes. Hence, the optimization problem is given by:

i = argmax
i

(N(i)), { j,k}= argmax
j,k

(Cc), subject to:

Cc = c1C1 + c2C2 0≤ {c1,c2} ≤ 1

C1 = (ni×n j) ·nk C2 =
N(i)+N( j)+N(k)

Ns

i 6= j 6= k 3≤ {N(i),N( j),N(k)} ≤ Ns


(6)

where N(l) is the inlier count for some plane l; Cc is the fitness
function, defined as weighted sum of C1 and C2; C1 maximizes
the span, and C2 maximizes the inlier count of the planes
Πi, Π j and Πk. The weights c1 and c2 were experimentally
determined and were set to c1 = c2 = 0.5.

For subsequent alignment, a right-handed local coordinate
system as shown in Fig. 4 is defined, which is called local
corner frame in the following. The origin xc is given by the
intersection of the planes, the axes are given by orthonormal-
izing the plane normals ni, n j and nk. For the economy of
notation, the plane normals and the related orthonormal vectors
are denoted by the same variables2.

The initial RTS pose can be estimated by relating the local
corner frame of the selected CAD model and the measured cor-
ner. At this state, only the orientations of the axes are known,
but not the labels and directions. Hence, a pose ambiguity
with 24 possibilities must be resolved. The correspondences
between axis labels and the extracted plane normals can either
be selected manually or assigned automatically. Automatic
assignment requires additional constraints; the up-vectors for

2While the interpretation of the plane intersection and normals as local
coordinate system enforces orthonormalization, the latter is not mandatory
for the proposed algorithm.
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Fig. 6: Robust sample extraction using initial pose and visible CAD
polygons, which are used to control the RTS.

both, the CAD model and the RTS must be approximately
known. As RTS require upright operation, and surveying
models usually contain the information about the up-vector, no
additional user input is required. Without loss of generality, we
assume that the up-directions of the CAD model and the RTS
are both aligned with the z-axis of the particular coordinate
system. In the proposed setup, Manhattan-like corners with
three planes usually have a prominent z-plane. Thus, the z-
plane can be selected from the previous detected corner planes:

iz = argmax
l
|arccos(z ·nl)| k ∈ {i, j,k} (7)

where iz is the index of the z-plane, and nl is the plane
normal of the extracted planes Πi, Π j or Πk. Eqn. 7 can be
applied to both, the selected CAD corner and the measured
corner. This reduces the remaining alignment ambiguity to four
possibilities as shown in Fig. 4.

The measured samples are mainly distributed in one octant
of the local corner frame. By enforcing that the majority of the
measured samples have to be in the positive half spaces of the
local corner frame, the remaining ambiguity can be resolved
for the measured corner. Similarly, the alignment of the local
corner frame of the selected CAD area can be fixed, using
each vertex of the selection as vote for a half space. In case
of ambiguous votes, additional user input is required.

Finally, the measured and selected local corner frame can be
aligned using Eqn. 1. ICP can be applied to the selected corner
and the measured samples to refine the initial RTS pose.

D. Automatic Pose Refinement Using Additional Samples

The estimated RTS pose of the proposed initialization method
relies on local measurements only. Hence, measurement un-

certainties and discrepancies between model and reality may
lead to an unacceptable registration error. In the following,
we discuss the individual steps of an iterative pose refinement
method, which uses the previous results as initialization. In
general, the proposed method automatically 1) selects robust
and well-distributed sample points for further pose refinement,
2) calculates the minimum movement for the RTS to measure
the sample points, 3) measures the selected samples, and
4) refines the registration pose.

E. Robust Sampling

For pose refinement, additional sampling points are required.
The sampling points have to be visible from the current RTS
position. At this state, only the RTS pose from the initial regis-
tration can be used to pick sampling candidates from potential
visible regions of the CAD model. Without prior knowledge
about the scene, the following sampling strategies could be
applied: a) random or uniform sampling within the bounding
box of the CAD model, b) random or uniform sampling on a
unit sphere around the initial RTS pose, c) random or uniform
sampling of points of the surface of the CAD model. Random
sampling without guidance would lead to an unacceptable
measurement time, even with a modern RTS. Furthermore,
without incorporating the initial pose, the spatial distribution of
random or uniform distributed samples highly depends on the
scene setup, as shown in Fig. 5. In this section, we provide a
better sampling strategy by incorporating the CAD model and
the initial RTS pose. First, we create a potentially visibility set
of polygons. This step extracts polygons of the CAD model
that are visible from the initial RTS pose. Connected, co-planar
polygons are joined together for further sampling.

Then, we define sampling candidates as uniformly dis-
tributed point sets for each polygon. Indoor environments usu-
ally have joints, skirting boards and similar details, which are
not presented in CAD models. Juretzko [21] describes prob-
lems with edge and corner measurements in reflectorless RTS
mode. Klug et al. [2] substantiate the statements of Juretzko by
analyzing measurement errors of corners. Therefore, sampling
candidates near polygon edges are excluded explicitly. Fig. 6
shows sampling candidates, which are calculated, filtered and
measured by the pose refinement step.

Then, the proposed sampling method uses a greedy point-
picking algorithm, which iterates over polygons to select
well-distributed samples. The procedure terminates after a
predefined number of samples. Alg. 3 shows the pseudo-code
for picking sample points.

Finally, the extracted sampling points are converted to
spherical coordinate angles for controlling the RTS.

F. Efficient Sample Measurement Order

Measuring random samples with an RTS without ordering
would lead to unnecessary RTS movements. Proper definition
of the scan order decreases the power consumption of the de-
vice, increases laser safety on construction side, and lowers the
overall measurement time. Smooth measurement movements
also increase the aesthetic aspect of the RTS operation.



Algorithm 3: Greedy point-picking algorithm. Points are
selected from each polygon group. Connected co-planar
CAD areas are joined before point-picking.

1 function select sample points;
Input : sample count threshold sample cnt and sample

candidates with reference to polygons pcand
Output: selected sample points psel

2 list psel := {}
3 foreach poly in polygons do
4 p := RANDOM SAMPLE(poly, pcand)
5 if p = {} then

// no more candidates for poly
6 REMOVE poly from polygons
7 else
8 APPEND p to psel
9 REMOVE p from pcand

10 if COUNT(psel) = sample cnt then
11 BREAK
12 return psel

Finding the minimum distance between multiple stops is
known as the travelling salesman problem (TSP). One common
formalization is based on linear integer programming (ILP)

xi j =

{
1 connection between point i and j
0 otherwise

(8)

where xi j describes the movement from point i to point j.
The shortest distance between two points on a sphere can be
expressed in spherical coordinates by the great-circle distance

∆α = arccos(sinθi sinθ j + cosθi cosθ j cos(ϕi−ϕ j)) (9)
di j = r ·∆α r = 1 (10)

where ∆α is the central angle between points i and j, and di j
is the shortest distance between them and r the sphere radius.

The ILP for Ns measurement points can be written as:

minxi j ∑
Ns
1 ∑

Ns
1 di jxi j, subject to:

xi j ∈ {0,1} 1≤ {i, j} ≤ Ns

Ns

∑
i=1,i 6= j

xi j = 1
Ns

∑
j=1, j 6=i

xi j = 1


(11)

which leads to a smooth sampling path and decreases the
overall sampling time [22]. Note that sub-tours are explicitly
allowed for performance reasons. Fig. 7 visualizes the opti-
mization of an exemplary set of points to measure with and
without sub-routines.

G. ICP Pose Refinement

The problem of refining the initial RTS pose with respect to the
CAD model is a pairwise surface-based registration problem.
A well-studied solution is the ICP algorithm. In this work, we
used the ICP algorithm with measured points, model surfaces,
and the point-plane distance metric as described by Mehdi [6].
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and without sub-routines.

IV. EXPERIMENTS

The proposed method is mainly designed for indoor scenarios,
where Manhattan-like corners are present and measurable.
Physical evaluation setups contain different error sources,
which contribute to the overall measurement uncertainty for
both, the reference result and the algorithm under test. In
general, the uncertainty in the result of a measurement or
calculation that consists of multiple components is known as
combined standard uncertainty. The estimation, propagation
and assessment of the measured physical quantities and the
related uncertainties are described in the JCGM 100:2008
Guide to the Expression of Uncertainty (GUM) [23].

Without controlling the properties of the physical setup,
the uncertainty of the result of a measurement or calculation
cannot be separated reliably into effects of different error
sources. This renders a physical evaluation approach critical
for the in-depth analysis of the proposed algorithm. For this
reason, we used a simulated RTS setup in this work3. Hence,
effects of sensor noise and as-built discrepancies with respect
to the registration results could be analyzed.

In the following, we provide the description of the test data
and the test coverage for the proposed algorithm, the simulated
RTS measurement setup and the variations of the uncertainty
sources for the RTS sensors and the CAD models.

A. Test Setup and Test Coverage

We altered several test parameters for better test coverage
as shown in the test taxonomy in Tab. I. In particular, we
compared different registration methods, different levels of
as-built discrepancies, and different sensor noise settings. We
report all registration results with and without subsequent ICP
refinement for better comparison of intermediate results. For
ICP, we used 15 point-plane correspondences.

The RTS control parameters and the reference result for
the registration were automatically generated for each test.
The CAD models and their variants were generated semi-
automatically. The model variants were used to simulate as-
built discrepancies. We compared the reference RTS registra-
tion with the manual registration method and with the assisted
registration method. For manual registration, we used three
point correspondences for each test. We also applied the ICP
approach to the manual registration for better comparison;

3An early version of the Unity3D-based RTS simulator was successfully
used by Klug et al. [2] for the design of interactive RTS algorithms.



TABLE I: Test set taxonomy and label encoding; test set label format:
{P D N}. Example: c d00 n0 denotes the test set that uses the
corner estimation method as initialization, no as-built discrepancies
and no sensor noise.

Name Variable Value Description

Initialization method P
p 3 points
c Corner

Refinement method
None
ICP

As-built discrepancy D

d00 None
d15 15mm Curvature
d30 30mm Curvature
dco Cutouts

(cmp) (combined test results)

Noise N
n0 None
n1 Measurement uncertainty

TABLE II: Sensor noise settings, modeled as measurement uncertain-
ties, enumerated by the test set label format variable N.

Label Description u1(d) u2(d) u1(α) u2(α)
n0 Without noise 0 0 0 0
n1 With noise 0.75E−3m 10E−6m 5

3600 ·
2π

360 rad 0

here, we showed that the corner estimation of the workflow
proposed in Fig. 2 can easily be replaced by any other
initialization method, like using three point correspondences.

The individual test sets analyze different as-built discrep-
ancies. We analyzed 1) no as-built discrepancies, 2) as-built
discrepancies at corner with 15mm and 30mm curvature
radius, and 3) as-built discrepancies at faces with missing
cutouts. In case of as-built discrepancies, the CAD model did
not have the same detail level as the reality. We simulated the
scenarios with detailed CAD models, but used the simplified
CAD model in our registration algorithm. Furthermore, we
simulated measurement uncertainties for sensors and targeting,
using the settings given in Tab. II. The EDM measurement
uncertainty uc(d) and the angle and targeting uncertainty
uc(α) were simulated by

uc(x)≈
√

u1(x)+(xu2(x))
2 x ∈ {d,α} (12)

where uc(x) is the simulated standard uncertainty with normal
distribution and zero mean; u1(x) is the additive and u2(x)
is the proportional uncertainty component; uc(α) is the angle
sensor and targeting uncertainty, which is assumed to be equal
for horizontal and vertical angle.

The steps required for test data generation are shown in
Fig. 8. During evaluation, the registration algorithm and the
reference simulation can use different variants of the same
CAD model for analyzing effects of as-built discrepancies.
We used detailed models for simulation and models with as-
built discrepancies as input for the discussed algorithms. The
simulated as-built discrepancies include missing CAD model
details, such as edge curvature, windows and door cutouts.

The error metric used in this work is given as follows: Let
the registration error of the RTS with respect to the CAD
model be the difference in angle and position between the
true and the calculated RTS frame. Then, the position error et

 

Test set label format: P_D_N 
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Fig. 8: Test data generation, using single-source for different CAD
model variants. As-built variants include fillets and curvature at edges
and missing details like door and window cutouts.

and the rotation error er for test set j are given by

et =

√
N

∑
i=1

||yi−y′i||2
N

er =

√
N

∑
i=1

(∆αi)
2

N
(13)

where N is the test count of test set j; i is the test index
within the test set; yi and y′i are the true and the estimated RTS
position, respectively; ∆αi is the minimum rotation between
the true and the estimated RTS pose. The minimum rotation is
given by the relative rotation between the calculated and the
true RTS frame, using the rotational part of the corresponding
axis-angle representation. In addition, we calculated the stan-
dard uncertainties uc(et) and uc(er) according to GUM [23].

RTS sensor simulation with Unity3D uses single-precision
floating-point arithmetic and causes outliers in the test results
due to round-off effects and EDM ray-casting misses. We
used the median absolute deviation to reduce the influence of
outliers [2], [24]. In particular, we applied the Matlab function
isoutlier with default parameters.

Each test set contains 130 tests. On average, we removed
≈ 11% outliers from each set. Test set labels are defined in
Tab. I. In addition, we defined combined test sets for the as-
built discrepancies for better comparison. In particular, we
applied Eqn. 13 on the collected values for ||yi−y′i|| and ∆αi
of the different as-built discrepancy test sets.

B. Registration Results

The results presented in Tab. III and Tab. IV show the benefits
of using ICP as a downstream step for RTS registration
algorithms. In all cases, we observed an decrease in error
and uncertainty when using ICP. In addition, the proposed
initialization method reduces the required user interaction for
registration. For special setups, camera-based targeting can
be avoided at all. However, the majority of the test sets
result in a better initial registration when using the manual
method, which was to be expected. In particular, we assumed
an idealized setup, for which the targeting uncertainty was
reduced to the sensor noise of the RTS. User dependent
variations have not been analyzed. All cases are affected by
the numeric precision of the Unity3D-based sensor simulation,
which is limited to single-precision floating-point arithmetic.
As-built discrepancies of CAD models have high influence
on the initialization methods. Hence, expert knowledge and
experience in measuring natural targets cannot be replaced.
However, currently, the traditional method does not include
ICP, while it is an integral step for our proposed method.



TABLE III: Evaluation results without simulated sensor noise (n0).
Test set labels are defined in Tab. I.

Test Set Initialization ICP
et [m] er [rad] et [m] er [rad]

p n0 d00 8.89E−06±7.30E−06 1.49E−06±1.48E−06 1.03E−06±6.98E−07 3.76E−07±2.40E−07
c n0 d00 3.56E−05±2.86E−05 5.12E−06±3.74E−06 1.27E−06±8.66E−07 4.37E−07±2.82E−07
p n0 d15 1.83E−02±8.58E−03 8.35E−04±4.97E−04 1.37E−06±1.01E−06 3.48E−07±2.12E−07
c n0 d15 1.45E−04±2.94E−04 2.68E−04±4.92E−04 1.30E−06±8.94E−07 3.74E−07±2.69E−07
p n0 d30 3.63E−02±2.06E−02 1.68E−03±1.29E−03 1.20E−06±7.12E−07 3.57E−07±1.91E−07
c n0 d30 7.22E−05±7.87E−05 9.58E−06±1.02E−05 1.36E−06±9.02E−07 5.60E−07±3.69E−07
p n0 dco 1.01E−05±9.28E−06 1.54E−06±1.54E−06 1.11E−06±6.66E−07 2.89E−07±1.53E−07
c n0 dco 3.35E−05±2.58E−05 4.82E−06±3.14E−06 1.02E−06±6.17E−07 2.72E−07±1.34E−07

p n0 cmp 3.35E−03±5.93E−03 1.30E−05±3.53E−05 1.18E−06±7.79E−07 3.36E−07±1.94E−07
c n0 cmp 4.73E−05±4.46E−05 6.93E−06±5.98E−06 1.23E−06±8.12E−07 3.99E−07±2.62E−07

TABLE IV: Evaluation results with simulated sensor noise (n1).

Test Set Initialization ICP
et [m] er [rad] et [m] er [rad]

p n1 d00 1.40E−03±1.02E−03 1.95E−04±1.38E−04 5.96E−04±2.88E−04 1.48E−04±1.06E−04
c n1 d00 2.22E−02±1.59E−02 3.43E−03±2.45E−03 6.85E−04±4.02E−04 1.81E−04±1.30E−04
p n1 d15 1.83E−02±8.91E−03 8.72E−04±5.09E−04 7.14E−04±3.95E−04 1.08E−04±5.44E−05
c n1 d15 4.67E−02±3.11E−02 6.70E−03±4.96E−03 6.54E−04±3.47E−04 1.58E−04±1.15E−04
p n1 d30 3.88E−02±2.25E−02 1.72E−03±1.33E−03 6.51E−04±3.21E−04 1.17E−04±6.32E−05
c n1 d30 3.23E−02±2.55E−02 4.51E−03±3.58E−03 8.23E−04±4.98E−04 2.04E−04±1.77E−04
p n1 dco 1.71E−03±1.19E−03 2.54E−04±1.72E−04 5.81E−04±3.06E−04 1.15E−04±5.93E−05
c n1 dco 2.39E−02±1.47E−02 3.47E−03±2.24E−03 6.54E−04±3.48E−04 1.23E−04±8.99E−05

p n1 cmp 7.43E−03±8.66E−03 4.60E−04±4.22E−04 6.31E−04±3.25E−04 1.16E−04±6.37E−05
c n1 cmp 2.96E−02±2.12E−02 4.11E−03±3.01E−03 6.94E−04±3.92E−04 1.54E−04±1.12E−04

V. CONCLUSION

In this work, we introduced a semi-automatic method for regis-
tration of RTS with respect to a CAD model. By using different
methods for initial registration, we show the flexibility of the
proposed algorithm. We explicitly avoided computationally
complex methods to limit the power consumption and run-
time to an acceptable level.

We proposed a robust Manhattan-like corner estimation
method for ICP initialization. Alternative methods, which
differ in the amount of user interaction and reliability of the
initial registration, like single wall initialization or Manhattan-
like structures with two walls, could be developed. Shape-
priors could be extracted from the CAD selection. While
this might be more robust in terms of detection, the added
causal dependency would increase the overall duration of
the registration workflow. In the current work, the ordered
point cloud of the initial measurements was interpreted as 3D
polygon, and the interior angles of the polygon edges were
used for clustering. Alternatives methods could be analyzed
regarding the reliability of the initial clustering.

We used three point correspondences as reference registra-
tion method. One next step is to generalize point correspon-
dences to point-and-direction correspondences, which covers
a broader range of model registration methods. Furthermore,
effects from systematic measurement errors like scale differ-
ences between current measurements and the CAD model can
be analyzed or compensated.

The analysis of computer vision-algorithms and user de-
pendent variations are beyond the scope of this work. User
studies with a physical setup could be used in addition to the
proposed analysis for additional insights and a more practical
comparison of the proposed algorithms.

The proposed sample candidate-picking algorithm highly
relies on the level of detail of the CAD model. In-cooperating
further information, such as saliency regions could further
decrease the uncertainty of the RTS registration. In particular,
different sampling strategies on a spherical saliency map could
be applied.
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[14] F. Bosché, “Automated recognition of 3D cad model objects in laser
scans and calculation of as-built dimensions for dimensional compliance
control in construction,” Adv. Eng. Informatics, vol. 24, pp. 107–118,
2010.
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