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ABSTRACT

Smartphones have been identified as most promising future devices
for an Augmented Reality (AR) mass market. However, their use
puts considerable constraints on the design and composition of AR
applications. The key problem is to find a registration mechanism
for accurate six degree of freedom (6DOF) self-localization with
respect to the environment. Approaches based on Computer Vi-
sion (CV) have been shown to be promising, but the feasibility of
many CV methods on smartphones is questionable. In this paper
we discuss current and future challenges faced in developing AR
on smartphones, in particular for large and unconstrained outdoor
environments. We focus on the registration task, giving a survey
and an assessment of existing approaches from AR and CV. From
this survey, we identify a set of important issues still seeking for
practical solutions, both in terms of the fundamental registration
problem and for making AR on smartphones a unique experience.
As will become apparent, despite recent advances, we are still far
from arriving at a universal solution to the problem.

Index Terms: 1.2.10 [Artificial Intelligence]: Vision and Scene
Understanding—3D/stereo scene analysis 1.4.8 [Image Processing
And Computer Vision]: Scene Analysis—Tracking; 1.5.4 [Pattern
Recognition]: Applications—Computer Vision C.5.3 [Computer
System Implementation]: Microcomputers—Portable devices (e.g.,
laptops, personal digital assistants)

1 INTRODUCTION

Advanced mobile phones, now commonly called smartphones, are
clearly the most promising platforms for an Augmented Reality
(AR) mass market. Due to continuous miniaturization, today’s mo-
bile phones are surprisingly powerful. However, the relative per-
formance gap to desktop computers is not closing. Consequently it
is difficult to deploy modern compute and memory intensive algo-
rithms designed for desktop computers on smartphones.

For AR, solving the registration task is the primary key exer-
cise. Precision requirements are stringent: since AR applications
fuse virtual and real information in 6DOF and in real time, even
slight inaccuracies in registration can cause intolerable distortions
in the combined view. Consequently, there are two hard problems
for mobile AR: registration must be both very accurate and efficient
in terms of computation and memory usage.

We consider this problem the ultimate challenge put before the
deployment of AR for the masses. We claim that despite contrary
appearance, most currently known solutions to the registration task
are not truly suitable for use on mobile phones. Thus, all AR re-
searchers are prompted to develop solutions specific to the problem
of wide-area application of AR on smartphones.

The aim of this paper is to analyze the current state of research
in AR on smartphones, in particular concerning Computer Vision
(CV) based localization and registration. In this respect we go be-
yond previous considerations (see e.g. [7]). In Section 2, we briefly
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discuss the current state of the art in smartphone technology. In
Section 3, we outline the task of localization and reflect on previ-
ously proposed solutions. In Section 4, we summarize challenges
currently faced in CV based localization in general. In Section 5,
we discuss specific challenges of deploying localization for AR.
Section 6 draws some conclusions.

2 SMARTPHONES AS A PLATFORMS FOR AR

Wagner and Schmalstieg [26] were the first to identify the potential
of handheld computers for AR in 2003. As the comparison of 2003
and 2011 given in Table 1 indicates, smartphones have improved in
every aspect relevant for AR: faster processors, more memory, im-
proved input interfaces, larger and superior displays, more sensors
and improved network capabilities.

With the advent of iPhone and Android OS, the term smart-
phone was coined to indicate the capability of these devices for
advanced computer applications. Due to improved touchscreen in-
terfaces in particular and the easy availability of smartphone soft-
ware (“apps”) through online stores, smartphones have had an over-
whelming commercial success. The strong commercial interest has
also brought along improved software development tools targeting
smartphones.

All in all, the smartphone ecosystem provides all ingredients to
deploy AR as a software-only solution to a mass audience. How-
ever, one should not overlook that despite all technical and logistic
improvements, there are still major obstacles for a large scale de-
ployment of AR applications:

Camera quality and handling. Imaging capabilities of
camera sensors typically deployed in smartphones are poor under
bad lighting conditions. Images are blurry and colors start to suffer
from significant aberration. Low-level access to the camera sensor
hardware is usually prohibited. APIs only provide a high level of
access to the camera sensor, rendering control of exposure, aper-
ture, or focal length impossible. Small CCD sensors are the cause
of increased amounts of noise in the camera feed, hurting the per-
formance of subsequent CV algorithms significantly. Quality lost
during image acquisition can hardly be compensated by further pro-
cessing steps.

Energy consumption. Battery power has not increased sig-
nificantly in recent years. Camera sensors require a lot of energy
when running constantly at high frame rates, which is mostly owed
to their intended use for still photography rather than video record-
ing. Moreover, CV algorithms are computationally demanding and
tend to drain the battery of smartphones quickly. Likewise, sen-
sors and network interfaces are heavy energy consumers. Running
fully featured AR applications causes batteries to rapidly discharge.
Consequently, AR applications must be designed to be used for
short time durations only, rather than as “always-on” features.

Network dependency. Accessing large amounts of data re-
motely suffers from several issues. First, network latency can harm
the instant behavior of AR applications, causing displeasing lags.
Second, accessing remote data is only possible with data plans that
may be expensive or unavailable. Last, network coverage may
be insufficient in certain areas. This leaves fully autonomous AR
applications as the only viable option, implying heavy use of on-
device storage capacities.



2003 [26] [ 2011
ARM Cortex A8/A9
CPU 400 MHz Intel xScale 800 MHz - 1GHz single-core
1.0 - 1.2 GHz dual-core
RAM 64 MB 512MB-1GB
Hardware GFX none OpenGL ES 1.1/2.0
Support
single 320x240 color front and back cameras,
Camera camera attached via 2 - 8 MegaPixel color
CompactFlash jacket
Display 3.87, 16-bit 240x320 4.3”, 32-bit 800x480
Interface Stylus, Buttons Touchscreen, Keyboard
GPS, compass, RFID
Sensors Fingerprint accelerometer, gyroscope,
proximity sensor, light sensor
WiFi WiFi
Network Bluetooth Bluetooth
GPRS 3G, GPRS, EDGE
Battery 900 - 1200 mAh 1400 - 1700 mAh
os Windows Pocket PC Android
Windows Mobile i0S
Price ~900€ 400 - 700 €

Table 1: Comparison of mobile phone hardware for AR, back in 2003
and today in 2011 (based on typical specifications for smartphones,
such as Samsung Galaxy S2, HTC Sensation or Apple iPhone 4).

Visualization and interaction possibilities. The form
factor of smartphones plays a major role in purchases. In fact, the
maximum acceptable device size puts severe constraints on how
large the display can be. Similar considerations restrict applica-
ble interaction techniques. Multi-touch interfaces are probably the
most evolved interaction mechanisms but their usability for certain
tasks, such as pixel-accurate selection, is poor.

In theory, the relevant aspects for improving future smartphone
hardware for AR are clearly known. In practice, however, devel-
opers of AR applications are at the mercy of hardware vendors
and service providers, who make hardware development decisions
based on market predictions that may not include the needs of AR.
However, hardware development is generally moving in the right
direction, partially driven by new application sectors such as mo-
bile games or mobile navigation system that share many techni-
cal requirements with AR. Moreover, researchers are aware of the
current limitations concerning camera control, which leads to im-
proved camera APIs, such as the Frankencamera work for example

[1].

Tablets as alternative mobile platform While tablets are
also emerging as popular mobile platforms, we consider these de-
vices to be oversized smartphone platforms basically. The visual-
ization and interaction constraints are slightly relaxed due to the
increased form factor, but the size and weight of these devices at
the same time limit their applicability in AR as their handling is
more exhausting (i.e. putting and holding the device up for a longer
period of time probably requiring both hands, in turn limiting the
interaction possibilities). Apart from that, current tablets share the
same issues as smartphones. Case by case, smartphones or tablets
are more suitable for a given AR application.

3 STATE OF THE ART IN SELF-LOCALIZATION

Self-Localization denotes the process of registering a device in
6DOF with respect to an environment. We must distinguish local-
ization relative to a local reference frame from absolute orientation
in global coordinates. In AR, solutions have been mostly proposed
for small local scenarios, such as the work of Reitmayr and Drum-
mond [20], PTAM by Klein and Murray [13, 14], or the work of
Wagner et al. [25], amongst others. The localization task is usu-

ally split into two parts: an “initialization” phase and a subsequent
“incremental tracking” phase!. It is commonly accepted that the
initialization phase poses a trickier problem than the incremental
tracking phase, and that initialization is also the computationally
more demanding problem. For the rest of this section, we therefore
only focus on solutions proposed for the initialization step.

Localization as an image recognition problem. Solv-
ing the localization task is often treated as an image recognition
problem. These approaches solve the task using a database of im-
ages, natural features extracted from the images, and some kind of
matching algorithm. To speed up the entire procedure, approximate
search structures, like vocabulary trees, are commonly used.

A work in the area of indoor SLAM was proposed by Se et
al. [23] for robots, with a final registration in 3DOF. Agrawal and
Konolige describe a localization system based on stereo vision and
GPS [2]>. A system for indoor localization using probabilistic
models can be found in the work of Li and Kosecka [16], while
Zhang and Kosecka proposed a system to match the current image
versus a database of GPS-tagged outdoor images [28]. A similar
system was proposed by Schindler ef al. dealing with an urban-
scale database and a large visual vocabulary [22]. Knopp et al. use
Google Streetview images for approximate place recognition [15],
similar to Zamir and Shah [27]. A very special application was
proposed by Hays and Efros matching the query image based on
image statistics to recover likely positions of where images where
acquired [8]. Later, Kalogerakis et al. enhanced the system with
additional priors of likely traveler visits [11]. Zheng et al. build
a database from community photo sites by finding clusters of im-
ages from commonly visited landmarks [29]. Baatz et al. use recti-
fied images resembling facades of buildings [4]. Upon this system,
Chen et al. build a landmark identification system, estimating an ap-
proximate GPS position [5]. Note that while some of these works
use images acquired with phones, none of them deal with actually
running CV software on smartphones.

The first localization system for mobile phones was proposed
by Robertson and Cipolla [21]. Takacs et al. presented a system
for approximate localization using natural features partitioned into
smaller feature bags [24]. Hile et al. clustered images from similar
locations and built local 3D reconstructions to register individual
views. The actual camera position is estimated directly from the top
image matches via triangulation [9]. Note that all these approaches
rely on a client-server setup with the mobile phone as the client and
the major processing load located on the server side.

It is also important to mention that none of the approaches men-
tioned so far actually calculate an accurate absolute 6DOF pose.
The approaches of Hile et al. [9] and Baatz et al. [4] mention the
theoretical capability of delivering approximate camera poses, how-
ever, no quantitative evaluation results are given.

Localization from models Registration is one part of the
SLAM problem, thus, a large number of approaches directly stem
from this area. Examples are the work of Davison [6], the work of
Klein and Murray [13], or the work of Karlekar et al. [12]. Other
important works can be found in the area of large-scale real-time re-
construction. These works include Mouragnon et al. [19], Irschara
et al. [10] and Lothe et al. [18]. Reitmayr and Drummond proposed
a system fusing GPS and model-based tracking in outdoor localiza-
tion [20]. In the work of Zhu ef al., localization is computed using
a landmark database and multi-stereo visual odometry [30]. Li et
al. solve the task as part of urban reconstruction, giving errors in
the range of several meters [17].

'Note that as opposed to “incremental tracking”, "tracking by detec-
tion” is achieved by performing an "initialization” step for each new input
sample.

%In this work natural features are used for depth perception rather than
image retrieval.



To the best of our knowledge, there are only two approaches fa-
cilitating instant 6DOF registration on smartphones without heavy
server-side processing. PTAM was shown to run on smartphones
targeting small workspaces [14]. Arth et al. proposed a system for
instant localization in large-scale urban environments based on 3D
reconstructions and database partitioning [3].

The vast amounts of literature about solving the localization task
suggest that there are plenty of solutions available for AR. How-
ever, as can be seen, most approaches only solve the problem at
a lower level of complexity than necessary for AR. They, for in-
stance, solely consider coarse position with fewer than 6DOF, only
estimate longitude/latitude, or just deliver the inaccurate GPS tags
of images retrieved from a database. They are dependent on very
large (Gigabytes) databases and have high computational require-
ments. Moreover, few of the techniques operate in real-time, not
even on desktop computers.

These limitations inherently render such approaches useless for
the purpose of smartphone AR. It must also be observed that the
CV and AR communities appear to work from a different set of ba-
sic assumptions concerning goals and outcomes, and that there is
little cross-fertilization between communities. Therefore, we have
to conclude that despite an apparently rich field of related works,
the task of localization for AR is still far from being solved satis-
factorily.

4 CHALLENGES IN COMPUTER VISION

One advantage of smartphones is that localization does not have to
rely on a camera sensor alone but can use any of the other available
sensors, such as GPS, compass, accelerometers and gyroscopes.
While the use of additional sensors is often considered as “cheat-
ing” in core CV communities, additional sensors provide essential
contribution to the development of fast and robust localization that
works outside of laboratory conditions. Even with the help of fu-
sion from multiple sensors, CV based localization remains a very
hard task for a number of reasons, as detailed in the following:

Textureness. Most approaches rely on natural features in the
form of interest points, which require sufficiently well-textured ar-
eas in the environment. A major issue with interest points is that
the presence of texture is crucial. Especially in indoor scenarios,
where blank walls commonly occur, using localization approaches
based on natural features, is difficult.

Lighting and weather conditions. While natural feature
descriptors are usually designed to be lighting invariantly, this as-
sumption can only hold for observations describing actual physical
features. Unfortunately, it turns out that in outdoor environments a
large number of features present in natural images does not relate to
real physical features. Shadows cast by objects in the scene cause
blobs, corners and lines to occur and to dynamically move as the
lighting or weather conditions change. As a result, an overwhelm-
ing number of outliers and mismatches affect localization quality,
independent of the choice of matching algorithm.

Large and volatile databases. For outdoor environments,
vast amounts of data have to be acquired and processed to form an
initial model prior to localization. Real-time approaches using ex-
pensive equipment can handle this issue: however, inaccessible ar-
eas can still cause holes (i.e., unmapped regions) in the final model.
Furthermore, the acquired model can only represent a static snap-
shot at a given point in time. Any change in the environment, e.g., a
shop window being redecorated, open or closed umbrellas in a café,
or parked cars cause the model to become outdated immediately af-
ter data collection. Another important aspect is the distribution of
the final models over (possibly mobile) communication channels.
As these models are usually of considerable size, their distribution
as a whole, or in part, imposes technical difficulties.

Inaccurate and missing sensor information. In outdoor
localization, GPS and compass information provides valuable ab-
solute information about the rough position and orientation of the
device. Unfortunately, sensors are brittle: depending on the actual
location, the accuracy of the sensor information can vary signifi-
cantly. Especially in narrow urban canyons, GPS information can
be off up to 100 meters or even be unavailable. Similarly, electronic
compass readings are strongly affected by magnetic disturbances
that are unavoidable in man-made environments.

Accurate localization is the primary and most important task to
be solved for AR. Yet, as outlined above, there are significant chal-
lenges remaining, for which truly practical solutions still have to be
found. Recent deployments of SLAM in tablet AR demonstrate that
localization in small-scale environments works sufficiently well if
certain conditions mentioned above (i.e. sufficient textureness) are
met’. However, localization in large-scale environments only exists
as proof-of-concept work. The associated problems appear to be of
very hard nature, so only slow progress can be assumed.

5 CHALLENGES IN AUGMENTED REALITY

Beyond academic goals such as achieving precision and scalabil-
ity of the researched algorithms, there is a set of practical concerns
that strongly affect the usability of AR experiences. These consid-
erations are only relevant for real-world applications of AR, and are
therefore not widely discussed in scientific literature. This may lead
to the incorrect observation that these problems are not difficult or
not relevant for the success of AR. The following issues are relevant
for smartphones, but also for general purpose AR:

Real hardware development versus the AR wish list”:
As mentioned in Section 2, the quality of cameras and other sen-
sors in current smartphone hardware is insufficient for high qual-
ity AR. Developers of AR applications would greatly benefit from
hardware advancements, such as stereo cameras, unified CPU/GPU
memory with random access, or WiFi triangulation. Unfortunately,
it is naive to assume that mobile phones will be optimized for AR
without a large established market. Any change in hardware con-
figuration costs millions of dollars in development, even more if
market expectations cannot be met afterwards. Today, customers
buy mobile phones mainly for voice communication, gaming and
web browsing. These markets will drive the near to middle term
evolution of smartphone capabilities. To make a claim for AR, we
will have to convince manufacturers that AR is the upcoming mar-
ket for mobile phone applications. Fortunately, there is sufficient
excitement about AR, nowadays, and therefore this could be hap-
pening in the near future.

Dynamic scenery versus AR realism. Current AR appli-
cations assume everything in a scene to be static. However, the
reality is the exact opposite. Especially in outdoor scenarios, al-
most everything is subject to change: people passing by, lighting
and weather conditions, even buildings may be painted in different
colors every few years. For localization, this causes a severe prob-
lem. In dynamic scenes, basic assumptions that most algorithms
make are violated right from the start. Assuming you are augment-
ing a building facade while people pass by and partially occlude
your view. Due to missing occlusion reasoning, noticeable errors
will become apparent, no matter how good the visualization of aug-
mented content actually is and how powerful the hardware platform
gets in the future. The lack of interaction between dynamic objects
and virtual content unconditionally harms realism in AR applica-
tions. Thus, the inclusion of object dynamic detection and tracking
techniques currently researched in CV are the key for high-quality
AR in the future.

3e.g. Ballinvasion game: http://13thlab.com/ballinvasion



Content creation versus registration: A large portion of
the excitement about AR comes from the potential involvement of
end users in content creation. Personal content creation is a key
to actively integrate users rather than leaving them as passive ob-
servers. However, basic mechanisms to facilitate this concept are
still missing. While interaction methods on mobile phones have
improved greatly, the question how to conveniently and accurately
register even simple content in 6DOF using a 2D interface and no
accurate global model of the environment is still open. Assume the
task of augmenting a window on a building facade. Current meth-
ods might not even suffice for the task of simple tagging. There is
no mechanism to input an arbitrary 3D position in open space, let
alone specifying orientation. Current approaches typically use the
(inaccurate) GPS position of the user, rather than of the object of
interest to determine the tag. For realistic and satisfactory content
creation through end users, accurate registration of arbitrary loca-
tions in the user’s vicinity must be made simple and robust — yet,
another challenging research topic beyond basic CV.

A solution to the registration problem only provides a small com-
ponent in the complex AR ecosystem. For many other impeding
issues, there is room for improvement using existing technologies,
and even more room for further research. Hardware related issues
could disappear quickly if industry picks up AR as a developing
market. Adoption of new CV algorithms in industry works slower
- we see that algorithms proposed in the CV research community
usually start being used in practice roughly 5-10 years after publi-
cation. Bringing the latest CV techniques to bear on AR will take
this amount of time. For successful deployment, it will further be
necessary to combine algorithmic improvement with research re-
sults from the mobile human-computer interaction community, so
that the technological capabilities can be transformed into tools that
benefit an actual user.

6 CONCLUSION

In this work we have discussed challenges in adopting smartphones
as the most important AR platform of the future. This vision faces
several tough challenges, which are discussed at some length in the
paper. The reader may have noticed that not all issues mentioned
here are of technical nature. Some of the problems have a more
subtle and obscure source, such as market strategies of hardware
vendors.

A major driving force for the development of AR on smart-
phones are improvements in hardware, which lead to more pow-
erful and more energy-aware devices. However, even with much
improved hardware, significant challenges are remaining. We there-
fore conclude that we are still far from being able to use AR as a
generally available feature on smartphones. Especially the local-
ization task is currently a major issues demanding more research.
Several difficulties of localization performed outdoors and in the
real world are barely addressed by existing CV research. We argue
that the diversity of issues proves the complexity of the application
of AR on smartphones, making it a worthy field for future scientific
research.
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