
Global 6DOF Pose Estimation from Untextured 2D City Models

Clemens Arth, Christian Pirchheim, Vincent Lepetit
Graz University of Technology

{arth,pirchheim,lepetit}@icg.tugraz.at

Jonathan Ventura
University of Colorado Colorado Springs

jventura@uccs.edu

Abstract

We propose a method for estimating the 3D pose for the
camera of a mobile device in outdoor conditions, using only
an untextured 2D model. Previous methods compute only
a relative pose using a SLAM algorithm, or require many
registered images, which are cumbersome to acquire. By
contrast, our method returns an accurate, absolute cam-
era pose in an absolute referential using simple 2D+height
maps, which are broadly available, to refine a first esti-
mate of the pose provided by the device’s sensors. We show
how to first estimate the camera absolute orientation from
straight line segments, and then how to estimate the trans-
lation by aligning the 2D map with a semantic segmentation
of the input image. We demonstrate the robustness and ac-
curacy of our approach on a challenging dataset.

1. Introduction

While tremendous progress has been made over the last
years in camera registration by combining image informa-
tion and pose and motion sensors, current methods still do
not allow large-scale image-based 3D localization. Some
methods compute the pose from matches between the input
images and pre-registered images [19, 18]. However, cre-
ating the registered images in the first place is still time-
consuming, and requires many images, which are often
available only for popular places. Other methods, based
on Simultaneous Localization and Mapping (SLAM) use
only the input images but are restricted to provide “rela-
tive” poses, meaning that the poses are recovered only up
to a rigid motion. This is not enough for many applica-
tions, such as navigation aid [11] or labeling of local touris-
tic landmarks [25].

As shown in Fig. 1, we therefore introduce a method that
relies on untextured 2D maps augmented with an approx-
imative height of the buildings to provide an absolute and
accurate pose that can be used for accurate 3D localization.
Such 2D maps are widely available in practice and can be

initial pose: Sensor, delta rot (17.66), delta pos (7.60),

21

21

21

21

13

30

30

ground truth pose

21

21

21

21

13

13

50

30

30

30

13

13

28
22

22

22

50

50

50

53

53

53

−60 −40 −20 0 20 40 60

−20

−10

0

10

20

30

40

50

60

70

80

56

55

5758

53

59

6023

24

22

25
26

18
17
16

1428

2715

19

13

45

50

20

46

4443

49

21

47

1

48
31

30

40

5

39
3837

9

323334

29

36

Figure 1: Top: Model reprojection into the pose estimate
provided by the sensors. Middle: Model reprojection after
correction by our method. Bottom: Our method relies only
on a 2D map and the heights of the buildings, in addition to
the input image itself.

1

obtained for example from OpenStreetMap 1, which offers
maps with a very broad coverage, and free to use under an
open license.

To the best of our knowledge, this is a novel approach to
outdoor 3D registration, but also a very challenging one, as
untextured 2D maps bring very little information. We also
exploit the pose estimate provided by the sensors, but it can
be very noisy as the one shown in Fig. 1.

In order to estimate the absolute orientation of the cam-
era, we assume that most of the straight line segments that
can be extracted from the buildings’ façades are either hor-
izontal or vertical. This is a common assumption used in
vanishing point and relative orientation estimation. It is
valid for many urban environments, and tolerates windows
with relatively complex shapes as the ones of the buildings
in our datasets.

This assumption together with the 2D maps allows us to
estimate the absolute orientation of the camera, but it does
not constrain the camera translation. We therefore propose
to solve for the translation by aligning the buildings model
with a semantic segmentation of the image.

Maybe the closest methods to our approach are the works
by Ramalingam et al. [15] and Chu et al. [3]. The former
is based on 3D models, SIFT features, and edges. Corre-
spondences between multiple images are used to estimate
accurate poses and only a qualitative assessment is given.
The latter work proposes an approach to improve GPS esti-
mates using descriptors of building corners formed by edges
and vanishing directions. While the results are encouraging,
however, the accuracy in terms of orientation and position
is far from sufficient for Augmented Reality applications
for example. By contrast, our approach provides a highly
accurate 6DOF pose using a single image.

In the remainder of the paper, we first discuss related
work in more details, and then describe our method, finally
evaluating it on a dataset acquired with a state-of-the-art
mobile device.

2. Related Work
Many approaches to outdoor registration have been de-

veloped, and we give here only a summary.
The first proposed systems were based on sensors

only [6]. However it quickly became clear that sensors are
not accurate enough by themselves for precise 3D augmen-
tations, and combining sensors with image information be-
came a natural approach: Digital Elevation Model (DEM)
data was used in [10] together with Shape Context descrip-
tors for horizon recognition. Later, [16] described a model-
based tracking system in urban environments, combining
sensors, textured 3D models, and edgels. [19] then showed
location recognition was possible using images only by stor-

1http://www.openstreetmap.org

ing millions of features from 20 km of urban street-side
imagery taken from a moving vehicle, organized in a vo-
cabulary tree to handle the massive amounts of data. Since
then, many works based on image retrieval have been pro-
posed [8, 28, 9, 18, 1].

These methods rely on a single image, but a few oth-
ers exploit several images. While, as pointed out in the in-
troduction, SLAM systems can only provide relative poses,
they are still useful to compute absolute poses: Recently,
[14] combined a real-time SLAM system on mobile de-
vices, together with a globally registered SFM reconstruc-
tion, providing highly accurate 6DOF tracking by aligning
a local SLAM map globally over time.

Image-based registration approaches rely on pre-
captured images that were registered offline, which is time-
consuming and does not scale well to world-wide areas.
[26] showed it was possible to use Google Street View im-
ages to get an estimate of the camera pose. Later, [22] im-
proved upon this, estimating the geospatial trajectory of a
camera with unknown intrinsic parameters in urban envi-
ronments. However, Google Street View images are not
available for every country, but much more critically it is
still very challenging to match images under arbitrary light-
ing in outdoor conditions, and Google Street View provides
only scarcely sampled images.

By contrast, our approach relies on broadly available
data, making it much more practical, and does not rely on
feature point matching but rather on straight line segments,
which are much more stable to lighting variations.

3. 2D Map-Based Pose Estimation from a
Single Image

Our approach proceeds is two steps. Using an initial pose
estimation from the device’s sensors for the input image, we
retrieve the 2D model of the surrounding buildings, and es-
timate first the camera orientation in a absolute coordinate
system. Given this orientation, we then estimate the trans-
lation.

3.1. Orientation Estimation

We start by computing the pitch and roll of the camera,
i.e. orientation of the camera’s vertical axis with respect to
gravity, from line segments. This can be performed without
using any information from the 2D map: It is a relatively
standard problem in the vanishing point literature, and we
describe briefly our approach. The estimation from such
data of the yaw, the last degree-of-freedom of the rotation,
in the absolute referential is, to the best of our knowledge,
a new problem.

http://www.openstreetmap.org

3.1.1 Estimating the Camera’s Vertical Axis

We want to estimate a rotation matrix Rv that aligns the
camera’s vertical axis with the gravity vector. We do so
by determining the dominant vertical vanishing point in the
image, using line segments extracted from the image. We
rely on the Line Segment Detector (LSD) algorithm [24],
followed by three filtering steps: we only retain line seg-
ments exceeding a certain length; lines below the horizon
line computed from the rotation estimate of the sensor are
removed, since these segments are likely located on the
ground plane or foreground object clutter; line segments
are removed if the angle between their projection and the
gravity vector given by the sensor is larger than a thresh-
old [13]. The intersection point p of the projections l1 and
l2 of two vertical lines is the vertical vanishing point, and
can be computed with as a cross product:

p = l1× l2 (1)

using homogeneous coordinates. As suggested in [17], we
use exhaustive search of all pairs of lines in order to find the
dominant vanishing point. For each pair of vertical line seg-
ments, we compute the intersection point and test it against
all line segments, using an angular error measure:

err(p, l) = acos
(

p · l
||p|| · ||l||

)
. (2)

The dominant vertical vanishing point pv is chosen as the
one with the highest number of inliers, using an error
threshold of σ degrees.

Given the dominant vertical vanishing point pv, we now
compute the rotation which would align the camera’s ver-
tical axis with the vertical vanishing point. The vertical
direction is z = [0 0 1]>. Using angle-axis representa-
tion, the axis of the rotation is u = pv× z and the angle is
θ = acos(pv · z), assuming that the vertical vanishing point
is normalized. The rotation Rv then can be constructed us-
ing SO(3) exponentiation:

Rv = expSO(3)

(
u · θ

||u||

)
. (3)

At this point, the camera orientation is determined up to
a rotation around its vertical axis (yaw). We explain in the
next section how to estimate this last degree-of-freedom for
the orientation.

3.1.2 Orientation in the Absolute Coordinate System

Fig. 2 gives our key idea to estimate the camera rotation
around the vertical axis in the absolute coordinate system:
We look for the rotation that makes the line segments corre-
sponding to horizontal 3D edges, actually horizontal when

rotation ransac: sInlierMethod(AllMin), nIdxPlane(21)

21

21

21

21

50

30

30

13

13

13

22

50

50

50

53

53

53

41
45 44

46

43

47
49

42

48
31

30

21

50

20

13

19

41
45 44 43

46

49

30

4847 31

21

50

20

13

19

Figure 2: Estimating rotation Rh. Top: line segments
identified as vertical (yellow) and horizontal (cyan) in 3D,
and the reprojection of the model after rotation correction
(green), but before translation correction. Bottom left:
back-projection of the line segments using the sensor pose.
We estimate the rotation around the vertical axis by making
the back-projection of the cyan segments horizontal. Bot-
tom right: reprojection of the line segments after rotation
correction.

they are back-projected on a simple 3D model inferred from
the 2D map.

Given a façade f from the 2D map, its horizontal vanish-
ing point is found as the cross product of its normal n f and
the vertical axis z:

ph = n f × z . (4)

After orientation correction through Rv, the projection of
horizontal lines lying on f should intersect ph. Thus, given
a horizontal vanishing point ph and the projection of a hor-
izontal line segment l3, we can compute the rotation Rh
about the vertical axis, to align the camera’s horizontal axis
with the horizontal vanishing point of f . This rotation has
one degree of freedom, φz, the amount of rotation about the
vertical axis:

Rh =

 cosφz −sinφz 0
sinφz cosφz 0

0 0 1

 . (5)

Using the substitution q = tan φy
2 we get cosφz =

1−q2

1+q2 and

sinφz =
2q

1+q2 [12]. We can therefore parameterize our rota-

tion matrix in terms of q:

Rh =
1

1+q2

 1−q2 −2q 0
2q 1−q2 0
0 0 1+q2

 . (6)

The intersection constraint between l3 and the horizontal
vanishing point ph is expressed as

ph · (Rhl) = 0 , (7)

giving a single quadratic polynomial in q. The roots of the
polynomial determine two possible rotations. This ambi-
guity is resolved by choosing the rotation which makes the
camera’s view vector opposite that of the normal n f .

In practice we create pairs < l, f > from line segments
l assigned to visible façades f , identified from the 2D map
using the initial pose estimate provided by the sensors, and
using a Binary Space Partition (BSP) tree [7] for efficient
assignment. We exhaustively evaluate the angular error
measure from Eq. (2) for a rotation estimate from the pair
< l, f > for all remaining pairs, choosing the hypothesis
with the highest number of inliers.

Finally, the absolute rotation R of the camera is com-
puted by chaining the two previous rotations Rv and Rh, i.e.

R = RvRh . (8)

Fig. 2 gives an example of this orientation estimation pro-
cedure, showing the line segments used for this estimation.

3.2. Translation Estimation

While the vertical and horizontal segments lying on the
façades allow us to estimate the camera’s orientation in a
global coordinate frame, it is easy to realize that horizontal
and vertical segments within the façades do not provide any
useful constraint to estimate the translation since we do not
know their exact 3D location. The pose could in theory be
computed from correspondences between the edges of the
buildings in the 2D map, and their reprojections in the im-
ages. In practice, it is virtually impossible to directly obtain
such matches reliably in absence of additional information.

Our key idea to estimate the translation is to align the 2D
map with a semantic segmentation of the image: We can
estimate the translation of the camera as the one that aligns
the façades of the 2D map with the façades extracted from
the image.

To speed up this alignment, and to make it more reliable,
we first generate a small set of possible translations given
the line segments in the image that potentially correspond
to the edges of the buildings in the 2D map. We then keep
the hypothesis that aligns the 2D map with the segmentation
the best. We detail these two steps below.

3.2.1 Generating Translation Hypotheses

In practice, the translation along the vertical axis is the most
problematic one to estimate from the image, because the
bottoms of the buildings are typically occluded by pedes-
trians. We therefore simply set the height of the camera at
1.6 m, which is reasonable for a handheld device.

We generate possible horizontal translations for the cam-
era by matching the edges of the buildings with the image.
However, this is a very challenging task, as the images are
very cluttered in practice.

As shown in Fig. 3, we generate a set of possible im-
age locations for the edges of the buildings with a simple
heuristic. We first rectify the input image using the orien-
tation so that vertical 3D lines also appear vertical in the
image, and we sum the image gradients along each column.
The columns with a large sum are likely to correspond to
the border of a building. However, since windows also have
strong vertical edges, they tend to generate many wrong hy-
potheses. To reduce their influence, we trained a multi-scale
window detector [23]. Pixels lying on the windows found
by the detector are ignored when computing the gradient
sums over the columns. We also use the façade segmenta-
tion result described in Section 3.2.2 to consider only the
pixels that lie on façades, but not on windows. Since the
sums may take very different values for different scenes, we
use a threshold estimated automatically for each image: We
fit a Gamma distribution to the histogram of the sums and
evaluate the quantile function with a fixed inlier probability.

Finally, as shown in Fig. 3(g) and Fig. 3(h), we generate
translation hypotheses for each possible pair of correspon-
dences between the vertical lines extracted from the image
and the building corners. The building corners come from
the corners in the 2D maps that are likely to be visible, given
the location provided by the GPS and the orientation esti-
mated during the first step. Given two vertical lines in the
image, l1 and l2, and two 3D points which are the corre-
sponding building corners, x1 and x2, the camera translation
t in the ground plane can be easily computed by solving the
following linear system:{

l1 · (x1 + t) = 0
l2 · (x2 + t) = 0 . (9)

3.2.2 Aligning the 2D Map with the Image

To select the best translation among the ones generated us-
ing the method described above, we evaluate the alignments
of the image and the 2D map after projection using each
generated translations.

We use a very simple pixel-wise segmentation of the in-
put image, by applying a classifier to each image patch of
a given size to assign a class label to the center location
of the patch. Much more sophisticated methods could be

vertically rectified image

(a) (b)
100 200 300 400 500 600

0

1000

2000

3000

4000

5000

6000

7000

(c)

(d) (e)
100 200 300 400 500 600

0

1000

2000

3000

4000

5000

6000

(f)
Image Lines: plotting 8 of 8

21

21

21

21

13

13 50

50

50

30

30

30

13

13

13

28
22

22

22

22

22
50

50

50

53

53

53

(g)

vertical model lines: count(4)

21

21

21

21

13

13 50

50

50

30

30

30

13

13

13

28
22

22

22

22

22
50

50

50

53

53

53

(h)

Figure 3: Generating translation hypotheses. (a): Vertically rectified image. (b): Image gradients. (c): Histogram of the
sums of the gradient magnitude over the columns. (d): Segmentation of the façades in cyan and window detections in black.
(e): Image gradients only for the pixels lying on a façade but not on a window. (f): Histogram of gradient sums, and selected
vertical image lines. (g): Selected image lines overlayed on the original image. (h): 3D model lines from building corners
overlayed on the original image using the ground truth pose, most of them were detected with our method.

used [21, 5], however we can still estimate reliably the cam-
era translation despite the relatively poor quality of our seg-
mentation.

More exactly, we apply a multi-class Support Vector
Machine (SVM) [20, 2] we trained on a dataset of manu-
ally segmented images, different from the images used to
evaluate our registration method. We use the integral fea-
tures introduced in [4], and consider five different classes
C = {c f ,cs,cr,cv,cg} for façade, sky, roof, vegetation and
ground, respectively. By applying the classifier exhaus-
tively, we obtain a probability estimate p for each image
pixel over these classes. Fig. 4 shows an example of a seg-
mentation for a typical input image.

As illustrated in Fig. 5, given the 2D projection
Proj(M, p) of our 2D map+height M into the image us-
ing pose hypothesis p, we compute the log-likelihood of
the pose:

sp =
Proj(M, p)

∑
i

log pi(c f)+
¬Proj(M, p)

∑
i

log
(
1− pi(c f)

)
, (10)

where ¬Proj(M, p) denotes the set of pixels lying outside
the reprojection Proj(M, p). The pixels lying on the pro-
jection Proj(M, p) of the façades should have a high prob-
ability to be on a façade in the image, and the pixels lying
outside should have a high probability to not be on a façade.

Figure 4: Pixel-wise segmentations we obtain with a simple multi-class SVM for two different images. Cyan corresponds to
façades, blue to sky, orange to roofs, green to vegetation, and yellow to ground plane.

Figure 5: Computing the log-likelihood. Left: Probability map for c f , the façade class. Middle: Probability maps for
cs,cr,cv and cg. Right: Reprojection Proj(M, p) for a pose close to the ground truth.

We keep the pose p̂ that maximizes the log-likelihood:

p̂ = argmax
p

sp . (11)

In practice, the 3D pose estimated from the sensors is
often not accurate enough to directly initialize our method.
We therefore sample six additional poses around this pose,
along a circle with a 12.5 m radius [27], execute our method
initialized from each of these seven poses, and keep the
computed pose with the largest likelihood.

Note that this approach naturally extends to more com-
plex building models, for example if the roofs of the build-
ings are also present in the model. The log-likelihood then
becomes:

sp = ∑
c∈CM

Proj(Mc, p)

∑
i

log pi(c)+
¬Proj(M, p)

∑
i

log

(
1− ∑

c∈CM

pi(c)

)
,

(12)
where CM is a subset of C and made of the different classes
that can appear in the buildings model, and Proj(Mc, p) the
projection of the components of the buildings model for
class c.

4. Experimental Results
In this section, we first describe the dataset we built to

evaluate our approach, and then report and discuss the re-
sults of the evaluation.

4.1. Dataset

To demonstrate the applicability of our approach, we
captured a dataset of 32 images with an Apple iPad Air in ur-

2 26 16 25 24 28 30 17 10 14 19 20 27 21 22 7 12 6 1 3 13 32 31 4 29 15 8 9 11 5
0

5

10

15

20

25

30

A
n

g
le

 d
el

ta
 w

rt
 G

T
 (

in
 d

eg
)

Scene ID

Sensor

Our solution

4 2 11 17 28 24 16 9 26 22 25 14 30 19 8 12 27 20 15 21 32 5 6 10 1 29 3 31 7 13
0

2

4

6

8

10

12

14

16

P
o

si
ti

o
n

 d
el

ta
 w

rt
 G

T
 (

in
 m

et
er

)

Scene ID

Sensor
Our Solution

Figure 6: Pose estimates accuracy. Top: Orientation, and
Bottom: Translation. We ranked the images from the one
with the largest error after correction to the one with the
smallest error. Our method significantly improves the accu-
racy of the orientation and translation estimates.

ban and suburban environments from a European city 2. The
images were captured without any special consideration for
satellite shadowing nor surrounding metallic structures.

2We will make our dataset including our 32 images, the sensor poses,
the ground truth poses, and the 2D+height maps publicly available

139

139

139

121

121

121 139

139

139

139

139

139

121
121

121

−40 −30 −20 −10 0 10 20

−70

−60

−50

−40

−30

−20
4546

47
484950

128

51

129

127

130

126

52

131

53

125

132

139

121

147

140

138122

120148

146110

133
134

137

123

136

135

124

119

145

149
150

152
151

114

114127

126
130

130

1303

3

3

114

114

126

126

126

126

130

130 4

4

4

4
4

−40 −30 −20 −10 0 10 20

−35

−30

−25

−20

−15

−10

−5

0

5

10

4

23
24
25
26
2728

37

2930

36

313233

35

34

53

63

64

65

54

62

666768

55

697071

61

56

727374

60

757677

57

59

78

58

79
80
81
82
83
84

144

114

126

145

143115

113127

125131

142

112

120

124

121

123

122

176

176

176

237

237

235

235

235

235

234

234

176

176
236

236

234

234

234

98

98

98

98

232

232232

237

237

237

237

235

235

235

235

234

234236

236

234

234

234

98

98

98

98

232

232232

187

187

187

35

162

162

161

161

161

36

36

162

162

162

164

164

−40 −30 −20 −10 0 10 20

−20

−15

−10

−5

0

5

10

15

20

25

30

114

115

48

237

195

49

236

5051

52

53

235234

233

176

232

99231
98

177

212211178

210179

213

24

24

24

16

16

1684

84

24

24

24

24

24
24

24

24

16

16

1684

84

84

84 24

24

24

24

24

74

−30 −20 −10 0 10 20 30

−30

−25

−20

−15

−10

−5

0

5

10

15

20

103

77

76

108

102

23

7822

79

21

24

6

20

8317
16

92112

15

8218
8119

7
9

91

80

8
57

84

101

11

8512
1458

100

13

11498

99

39

113

4041

38

123

42

102

102

102

102

101
144

144

101

101 100 100100

100

100

100 116

116

116

116

144

144

144
102

102

102

102

101144

144

101

101 100

100

100

100

100

100
100

100

100 116

116

116

116144

144

144

−50 −40 −30 −20 −10 0 10 20

−20

−10

0

10

20

30

13387

204

131

25

137

130

121

129

122

128127
126
123
125124

26136

134

203

135

202

219

218
217
216

215

60

61

5359

101

102

58
575655

62

54

100

103143

6369

68
67

97

96

142

98

141

11799

70

118119

116

120

4671

112
113

21

21
25

25

25

25

21
24

245

5

5

5

8

8

7

7

7 6

6

23

23

23

24

243

3

10

10

109

9

9

10

10

10

3

3

3

13

13

13

13

14

14

14

20

20

20

21

21

2125

25

25

25

21

21
24

24
20

2023

23

23

24

24

38
20

20

38

38

38

38

20

20

20 41

41

41

42

42

42

46

4645

16

16

16

16

17

17

46

46

46

−40 −30 −20 −10 0 10 20 30

−60

−50

−40

−30

−20

−10
16

41

17

4039

18

29

19

28

38

55

27

36

54

37

20

53

26

23
22

21

24
25

16

16

17

37

37

37

11

11

11

167

167

167

167

167

167

167

16

16

16

8282

8282
16

16

16

17

17

1718

18

82

82

37

37

37

18

18

18

37

37

37

37

37

150
151

151

151
151
151

16

16

16

16

16121

120

120

120

120

−30 −20 −10 0 10 20 30
−50

−40

−30

−20

−10

0

62

63

54

120

106

64

104

105

15121

16

14
13

17

3619

83

18

101

82

84

95

100

73

74

81

134

75

135

76
77

133131

78

88

79

89

80

132

90

87

128

91

86

9392

85

74

74

74

74

74

74

121

121

121

75

75
104

104

104

103
103

103

−40 −30 −20 −10 0 10

−30

−25

−20

−15

−10

−5

0

5

10

9

118

102

119

77
78
79

12076

80

103

5

8173

75

6789

74

140

44

41

43

42

139

47

48

46

155

15449
156115

50

157

5368

46

46

46

6060

60

60

52

52

60

6052

52

52

52

52

52

52

52

52

52

52

5256

56

102

102

102

102

46

4647

47

47

101

101

101

46

46

46

60

60100

100

60

60

60

60

52

52

60

6052

52

52

−10 0 10 20 30 40 50 60 70

−20

−10

0

10

20

30

40

45

4

6
5

742
8

9

36

37

47

101102
100
103104

9998

48

97
95
96

46

94

38

93

49

92
91

50

81
80

6151

82

39

62
83

60

67

63

90

68

66

69

29

30

28

53

70

64

71

757476
77

12365

54

122

5

5

92

39

39

39

40

40

40

39

39

39

39

39

36

36

36
35

35

35

46

46

4

4

4

39

39

39

40

40

40
44

44

44

39

39

39

39

39

36

36

36 35

3546
46

46

−30 −20 −10 0 10 20

−20

−15

−10

−5

0

5

10

15

20

25 11

24

10

1

9

2

8

56

4

7

3

40

44

41

43

25

42

39

2627

38

28

37

145

145

144
144

144144
144

144

170169

131

131
144 144 144144

144

144

144

132

143

143

143143

143

143

143

143

143143

143

170

143

143

143

169169

169

169

169

169

169

169

169

−20 −10 0 10 20 30

−25

−20

−15

−10

−5

0

5

10

15

106

157

66

158160

194

161

65

162

73

70

163

72

159

71

164

62

165

61

63

166

128

168

167
188

189

60

64

187

90

91

89

118

92117

93127

186

131

129

126
125

124

119

130145

123122

146

48120

47121

144

46

147

148

49

149
132

133
134135

50

51

85

8452

143
28

2828

28

28
94

94

94

94

93

15

15

15

15

3

3
93 94

94

94

94

93

15

15

15

15

3

3
93

93

93

93

93

93

93
61

61

61 61

61

−50 −40 −30 −20 −10 0 10 20
−20

−10

0

10

20

30

40

60

156

158

57

61

565591

9262

155

159

90

160161162

96

89

80

88

81

87

163

86
85
82
8483

295

93

154

164110

94

153

170

169
168
167

109108

166

165

106
107

105

27

28

68

69

29

67

70102

3036

64

63

101

65

100

6676

29

29

28

28

26

26

26

29

29

30

30

31

3133

33
73

73

43

43

33

3343

4344

44

45

45

4547

47

44

44

4443

4347

47

47

4756

56

56

47

47

47

55

56

56

29

29

29

28

28

28

26

26

26

29

29

29

30

30

30

31

31

3133

33

73

73

7374

11

11

11

11

12

12

1213

13

1373

73

73

43

43

33

3343

4344

44

45

45

4547

47

44

44

4443

4347

47

47

47
56

47

47

55

56

56

−40 −30 −20 −10 0 10 20 30 40 50 60

−40

−30

−20

−10

0

10

20

30

40

137

131

134

141

144143

150

149

142

151

148

152

103

153154155
156

102

146

145

101

29
30

28
27

3132

26

74

33

73

7525

13

43

23

42

22
24

17

44

21

18

76

15

20

7214

19
16

62

45

63

41

46

64

68
69

67

70

40

71

65

47

66

1

159

2

158

3

48

4

16039

5

55

36
37
3534

165

157

38

166

161

56

167

164

162

6

545253
51

168

83

50

85
84

86

82

49

8788

81

57

89

80

163

58

121

59

61

79

120

78

117

90

122

118

169

119

60

77

116

123124125

10592

76

76

76

71

71

71

72

75

75

75

71

71

71

72

72
104

104

104

103

103

103

76

76

76

76

71

71

71

72

75

75

75

71

71

71

72

72
104

104

104

103

103

103

76

76

−10 0 10 20 30 40 50 60

−70

−60

−50

−40

−30

−20

85

82

84

66

83

80

91

67

9089

68

79

69

78

88

105

77

86

104

87

70

103

76

73
72

71

74
75

139

139

139

139

139

139

121

121
139

139

139
121

121

121148

148 147

147

−40 −30 −20 −10 0 10 20
−70

−60

−50

−40

−30

−20

−10

46
47

484950

128

56

51

127

126

55

52

54
53

125

132

139

121

147

109

140

138122

148120

146110

133
134

137
123

136

135

124

119

145

107

149
150

152
151

217217

101

101

101

93

217

217

217

101

101

101

101

93

217

217

217

217

217

152

151

151

151

165

164

164

164

164

164

190185

189

189

189

186

186

186185

−35 −30 −25 −20 −15 −10 −5 0 5 10 15

0

5

10

15

20

25

30

35

8

87

52

94

12695

53

96
97

54

93

62

98

61
60

69

101

24

2575

103

76

102

106

107

40

14

2

109

109

109139

139
109

109

109

109

118

117

117139

139

139

−30 −20 −10 0 10 20

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

46
47

48

58

49

57

50

56

51

55

52

54
53

121

139

109

140120

138110

108118

119

137

107

111

126

126

114

114

114

144

144

126

126

114

114

114

144

144

−40 −30 −20 −10 0 10

−35

−30

−25

−20

−15

−10

−5

0

5

54

62

666768697071

61

727374

60

757677

57

59

78

58

79
80
81
82

144

114

126

115143

113127

142

112

120

124

121

123

122

79

7911

11

11

139

−20 −15 −10 −5 0 5 10 15 20 25

−30

−25

−20

−15

−10

−5

0

5

31

26

3619

30

42

29

28

10541

27

104

10640

157107

15439

37

15699

38

155

79

82

11

7812

139

77

14010

9

141

80

80

11

80

80

84

84

84

65

65

65

65

65

80

80

11

80

80

84

84

−20 −10 0 10 20 30

−25

−20

−15

−10

−5

0

5

10

15

46

2122

32

45

23

14

24

44

13

43

25

31

26

3619

30

42

29

28

18

10641

27

105

10740

158108

15539

37

157100

38

156

80

8381

11

7912

140

78

14110

132139

9

143145

142

2

90

24

24

242525

25

2526
24

24

24
16

16 16

16

16

24

24

2425

25

25

34

34

34

34

26

26

11

11

11

11
24

24

24
16

1616

16

−30 −20 −10 0 10 20 30

−20

−15

−10

−5

0

5

10

15

20

25

30

49

50

454488

8951

152

156157158159

84

160

90

151

161
107

150

167

166
165
164

106105

163

162

103
104

25

65

66

26

100

64

6799

63 132

119
119

119

119

119

119

119

119

119

150

150

150

58

58

58

5959

59

60

58

5858

5858

5858

58

58

−35 −30 −25 −20 −15 −10 −5 0 5 10 15

−20

−15

−10

−5

0

5

10

15

104

162

68

163

159

69

164

49

165

48

50

166

116

168

167
188

47

51

220190

187

88

89

87

106

90105

91
115

119

117

113
112

107

133118

111110

134

35108

34109

132

135

136

36

137

120

121
122

Figure 7: Results of our approach on test images. For each triplet of images: Left: Model reprojection into the image using
the initial sensor pose. Middle: Model reprojection into the image using the final estimated pose. Right: Map view, sensor
pose (in blue) and the corrected pose (in green).

135131 138138

30 40 50 60 70 80 90 100

−60

−50

−40

−30

−20

−10

0

140143

137

139

138

132

133

131136

134

135

42

112

111

109

109

109

147

147

121

121

121

148147

147
109

109

109

109

118

117

117

147

147

−40 −30 −20 −10 0 10 20

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

47
4849

57

50

56

51

55

52

54
53

121

147

109

122138

148120

146110

108118

123124

119

145

107

149
150

152
151

144

143
143

126

126

143
126126126126126

126

125

125

125

−40 −30 −20 −10 0 10 20 30 40
−40

−30

−20

−10

0

10

20

30

51

35

504948

20

15

47
46

2122

32

81

45

23

14

24

44

13

43

25

85

82

15284

11083

31

26

3619

30

42

29

97

151

98

28

99

10141

27

153109

100

157

10240

156

108

155

107

161103

154

106

90
91
92

105

89

104

93

88

94

15839

87

37

116
115
114

16095

38

159

86

117

75

96

7876

11

118

7412

143

73

14410

142127

126

9

125

128147

146148

124

145

123

129150

122

149

130

131

133

52

64

53

132

54

61

60

103

103

103118
23

23

197

197

197

197
145

145

145

208

208

118

118

144

145

145

227

227

227

161

161

161

161

160

160

8

816

16

16

15

15

15

8

8
16

16

101

101
103

103

103118

197

197

197
145

145

145

118

144

145

145

227

227

227

161

161

161

161

160

160

−40 −30 −20 −10 0 10 20 30 40 50

−30

−20

−10

0

10

20

30

40

212213214

211

206

20

21021

1942

41

18

207

4326

20922

227

25229

145

208

2423044232

161

226

144

23

162

160

231

198

45

197

46

143184

47
48

118

49

142185163

103

159199

102

50
51

101

52

119201

178164

100

104117

165147

39

177

9940

148

158

152
149
151

113

153
150

200

154

192

114

112111

98

116

193157

97

155

110

115

109

27

96

105

194156

28

182

130

29

108

195

131

191120

10630

196

107
121133

38

31129

132

134

181188

135136

12832

190122

33
3435

123

37

36

189

127

124

Figure 8: Images with the largest pose errors. For each triplet of images: Left: Model reprojection into the image using
the initial sensor pose. Middle: Model reprojection into the image using the final estimated pose. Right: Map view, sensor
pose (in blue) and the corrected pose (in green). Even for these images, the model reprojection tends to be close to the
expected position.

As a consequence, the accuracy of the pose estimated
with the sensors only ranges from very accurate, about
0.4 m position and 2◦ rotation error, to very poor, up to
16.5 m position and about 30◦ rotation error. Since alti-
tude estimates from sensors tend to be very poor, we reset
the altitude estimates of the poses predicted by the sensors
to a default value of 1.6 m. For each test image, we calcu-
lated a ground truth pose by manually matching 2D image
locations with 3D points from the maps.

We retrieved 2D maps of the surroundings from Open-
StreetMap and extended them with a coarse estimate of
the height of the buildings, obtained from aerial laser scan
height data provided by local authorities.

4.2. Orientation Accuracy

Fig. 6-top plots the angular error of the camera pose pre-
dicted by the sensors, and after correction with our method.
The error is calculated as the angle difference between the
estimated rotation and the ground-truth rotation in angle-
axis representation. We ranked the images from the one
with the largest error after correction to the one with the
smallest error. The sensors make errors that can reach up to
30◦. After our method, all our orientation estimates have an
angle error below 5◦, with the exception of a single outlier
image which contains very little horizontal lines. 90.6% of
the estimates are below 3◦, 84.4% below 2◦ and 50% below
1◦ of angular error with respect to the ground truth rotation.

4.3. Translation Accuracy

Fig. 6-bottom gives the results of our translation estima-
tion method. As for the rotation, we ranked the images from
the one with the largest error after correction to the one with
the smallest error. The sensor errors range from about 0.4 m
to about 16.5 m, with an average error of about 8 m. Our
method significantly decreases the translation error in most
of the cases. The worst results are due to buildings next
to each other, with edges that cannot be extracted correctly.
Overall, our method is able to considerably improve the po-

sition estimates from the sensors, with the pose estimates
for 87.5% of the images being below 4 m, 68.8% below 2 m
and 59.4% below 1 m of error with respect to the ground
truth position.

4.4. Visual Inspection

Fig. 7 presents the final results of our algorithm for many
different images, showing the reprojection of the model us-
ing both the sensor pose and the pose retrieved from our
approach. After pose estimation, the outlines of the models
nicely fit the building outlines, even for very challenging
scenes with many façades visible and a considerable rota-
tion and position error in the sensor estimate. The amount
of correction can be assessed from the map view, as both
the rotation and translation undergo a significant correction
during the application of our method.

Fig. 8 shows the images with the largest pose errors.
Failures are mostly due to buildings next to each other, with-
out clear separation between them.

5. Conclusion

We presented a novel approach to accurate 6DOF pose
estimation that relies only on 2D maps. Our approach takes
sensor estimates and corrects the rotation estimate, followed
by fitting an untextured 3D model to an automated segmen-
tation of the input image. Our approach is evaluated on a
challenging dataset of real-world images and sensor data,
and considerably improved the pose estimates both in terms
of rotation and translation.

Our approach can be used to initialize a SLAM algo-
rithm, which will thus provide the camera pose in the coor-
dinate system of the 2D maps. We plan to use this approach
in Augmented Reality applications on mobile devices.

While our method already provides good results, it can
certainly be improved. We hope that our work and dataset
will encourage new research on the problem we introduce
in this paper.

References
[1] G. Baatz, O. Saurer, K. Köser, and M. Pollefeys. Large Scale

Visual Geo-Localization of Images in Mountainous Terrain.
In ECCV, 2012. 2

[2] C.-C. Chang and C.-J. Lin. Libsvm: A library for sup-
port vector machines. ACM Trans. Intell. Syst. Technol.,
2(3):27:1–27:27, 2011. 5

[3] H. Chu, A. Gallagher, and T. Chen. GPS Refinement and
Camera Orientation Estimation from a Single Image and a
2D Map. In CVPR, 2014. 2

[4] P. Dollár, Z. Tu, P. Perona, and S. Belongie. Integral channel
features. In BMVC, 2009. 5

[5] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning
Hierarchical Features for Scene Labeling. PAMI, 2013. 5

[6] S. Feiner, B. MacIntyre, T. Höllerer, and A. Webster. A
Touring Machine: Prototyping 3D Mobile Augmented Real-
ity Systems for Exploring the Urban Environment. Personal
and Ubiquitous Computing, 1(4):208–217, 1997. 2

[7] H. Fuchs, Z. M. Kedem, and B. F. Naylor. On visible surface
generation by a priori tree structures. SIGGRAPH Comput.
Graph., 14(3):124–133, July 1980. 4

[8] J. Hays and A. A. Efros. Im2gps: Estimating Geographic
Information from a Single Image. In CVPR, 2008. 2

[9] E. Kalogerakis, O. Vesselova, J. Hays, A. Efros, and
A. Hertzmann. Image Sequence Geolocation with Human
Travel Priors. In ICCV, 2009. 2

[10] J. Karlekar, S. Zhou, W. Lu, Z. C. Loh, and Y. Nakayama.
Positioning, Tracking and Mapping for Outdoor Augmenta-
tion. In ISMAR, 2010. 2

[11] J. Krolewski and P. Gawrysiak. The Mobile Personal Aug-
mented Reality Navigation System. In Man-Machine Inter-
actions 2, volume 103, pages 105–113. Springer Berlin Hei-
delberg, 2011. 1

[12] Z. Kukelova, M. Bujnak, and T. Pajdla. Closed-Form Solu-
tions to Minimal Absolute Pose Problems with Known Ver-
tical Direction. In ACCV, 2011. 3

[13] D. Kurz and S. Benhimane. Gravity-Aware Handheld Aug-
mented Reality. In ISMAR, 2010. 3

[14] S. Middelberg, T. Sattler, O. Untzelmann, and L. Kobbelt.
Scalable 6-DOF Localization on Mobile Devices. In ECCV,
2014. 2

[15] S. Ramalingam, S. Bouaziz, and P. Sturm. Pose Estimation
Using Both Points and Lines for Geo-Localization. In ICRA,
2011. 2

[16] G. Reitmayr and T. W. Drummond. Going Out: Robust
Model-Based Tracking for Outdoor AR. In ISMAR, 2006.
2

[17] C. Rother. A New Approach to Vanishing Point Detection in
Architectural Environments. Image and Vision Computing,
20(9-10):647–655, 2002. 3

[18] T. Sattler, B. Leibe, and L. Kobbelt. Improving Image-Based
Localization by Active Correspondence Search. In ECCV,
2012. 1, 2

[19] G. Schindler, M. Brown, and R. Szeliski. City-Scale Loca-
tion Recognition. In CVPR, 2007. 1, 2

[20] B. Schölkopf and A. J. Smola. Learning with Kernels: Sup-
port Vector Machines, Regularization, Optimization, and Be-
yond. MIT Press, Cambridge, MA, USA, 2001. 5

[21] J. Shotton, M. Johnson, and R. Cipolla. Semantic Tex-
ton Forests for Image Categorization and Segmentation. In
CVPR, 2008. 5

[22] G. Vaca-Castano, A. R. Zamir, and M. Shah. City Scale
Geo-Spatial Trajectory Estimation of a Moving Camera. In
CVPR, 2012. 2

[23] P. Viola and M. Jones. Robust Real-Time Face Detection.
IJCV, 57(2):137–154, 2004. 4

[24] R. von Gioi, J. Jakubowicz, J. M. Morel, and G. Randall.
LSD: A Fast Line Segment Detector with a False Detection
Control. PAMI, 32(4):722–732, April 2010. 3

[25] K. Xu, A. Cheok, K. W. Chia, and S. Prince. Visual Reg-
istration for Geographical Labeling in Wearable Computing.
In International Symposium on Wearable Computers, 2002.
1

[26] A. R. Zamir and M. Shah. Accurate Image Localization
Based on Google Maps Street View. In ECCV, 2010. 2

[27] P. A. Zandbergen and S. J. Barbeau. Positional Accuracy
of Assisted GPS Data from High-Sensitivity GPS-enabled
Mobile Phones. Journal of Navigation, 64:381–399, 7 2011.
6

[28] Y.-T. Zheng, M. Zhao, Y. Song, H. Adam, U. Buddemeier,
A. Bissacco, F. Brucher, and H. Neven. Tour the World:
Building a Web-Scale Landmark Recognition Engine. In
CVPR, 2009. 2

