
Efficient Physics-Based Implementation for
Realistic Hand-Object Interaction in Virtual Reality

Markus Höll1* Markus Oberweger1 Clemens Arth1 Vincent Lepetit1,2
1Institute of Computer Graphics and Vision, Graz University of Technology, Austria

2Laboratoire Bordelais de Recherche en Informatique, Université de Bordeaux, France

Figure 1: Demonstration of our physics-based hand interaction method for VR environments. Our approach allows countless complex
interactions such as handling a box in one hand and opening it with the other (top-left), or smashing a wall with an axe held in one
hand (top-right). We can even spin an object between two fingers from two different hands (bottom-left) or from the same hand
(bottom-right) in a very realistic manner. The red arrows indicate the forces calculated with our method and applied to the objects.
Yellow arrows depict the global hand motion depicted for demonstration purposes only.

ABSTRACT

We propose an efficient physics-based method for dexterous ’real
hand’-’virtual object’ interaction in Virtual Reality environments.
Our method is based on the Coulomb friction model, and we show
how to efficiently implement it in a commodity VR engine for real-
time performance. This model enables very convincing simulations
of many types of actions such as pushing, pulling, grasping, or even
dexterous manipulations such as spinning objects between fingers
without restrictions on the objects’ shapes or hand poses. Because
it is an analytic model, we do not require any prerecorded data, in
contrast to previous methods. For the evaluation of our method, we
conduction a pilot study that shows that our method is perceived
more realistic and natural, and allows for more diverse interactions.
Further, we evaluate the computational complexity of our method to
show real-time performance in VR environments.

Index Terms: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically-based Modeling; I.3.6
[Computer Graphics]: Methodology and Techniques—Interaction
Techniques; I.3.7 [Computer Graphics]: Three-Dimensional Graph-
ics and Realism—Virtual Reality; H.5.2 [Information Interfaces and
Presentation]: User Interfaces—Direct Manipulation

*E-mail: {hoell,oberweger,arth,lepetit}@icg.tugraz.at

1 INTRODUCTION

Virtual Reality but also Augmented Reality applications require
interaction between the user and the virtual elements. Controllers
such as the Nintendo Wii-Mote [44], Oculus Touch, HTC Vive
Controller, or HoloLens Clicker can be used. However, they are
cumbersome and not very intuitive to use, and the possibility of
using our bare hands for the interaction is very appealing for VR
games and VR environments. It can even play a key role in medical
applications [9].

Many methods and hardware [14, 28, 51] have been developed to
accurately capture the 3D pose of the user’s hands. This is, however,
not sufficient for realistic hand interactions: If the user’s hand is
simply modeled as a ’kinematic object’, the virtual hand follows the
tracking information for the real hand motion and can penetrate the
virtual objects, which can lead to very unstable results in physics
engines [16]. The Leap Motion Interaction Engine1 does solve this
penetration problem and supports grasping but in a non-physics-
based way as the hand motions are directly transferred to the held
objects.

To be convincing, the physical interaction between the hands
and the virtual objects needs to be realistically simulated. Because
such simulation can be very complex, most proposed interaction
approaches are simplified, constrained, or artificial. For example,
some methods recognize gestures that trigger some predefined in-
teractions [7, 25, 45]. Other methods require some prior training
phase [34, 37]. Physics-based methods, like ours, provide more

1https://developer.leapmotion.com/unity/

h


unconstrained interaction possibilities [4, 16, 17, 27]. However, cur-
rently, these methods are mostly limited to simple grasping interac-
tions.

In the real world, our ability to interact with objects is due to
the presence of friction between the surfaces of the objects and our
hands, as friction is a force that resists motion. We therefore aimed
to take into account friction forces correctly in our approach. We
propose to use the Coulomb friction model for properly simulating
the forces the user applies to the objects according to the 3D pose and
motion of his/her hand, to counteract external forces such as gravity
or collision forces. The Coulomb friction model captures under
the same framework both static and dynamic effects that happen
when two objects are in contact. It is only an approximation of real
dynamics, but as we will show, it produces convincing motions while
remaining tractable, in contrast to approaches such as [39,41], which
rely on a more complex physics model but are much less efficient
and thus not applicable for real-time VR. In other words, we argue
that the Coulomb friction model is a good trade-off between realism
and tractability for interaction in VR.

This model choice indeed allows us to simulate interactions much
more complex than simple grasping. For example, with our ap-
proach, the user can push, pull, let an object slide along his/her
hand if (s)he does not grasp it firmly enough, or even spin an object
between two fingers. Fig. 1 illustrates various types of interactions
possible with our approach.

Our method starts from the 3D hand pose—in practice we use
the Leap Motion device to estimate it. Using a simplified 3D model
of the hand, we detect the intersections between this hand and the
virtual objects. From these intersections, we define contact points
between the virtual object and a virtual hand model, which corre-
sponds to the real hand just before it starts penetrating the objects.
We then show how to apply the Coulomb friction model to these con-
tact points, taking into account the force applied by the user, which
we take proportional to how much his/her real hand penetrates the
virtual objects, and the friction parameters of the materials of the
objects to compute the final resulting forces. We can then introduce
them in a physics engine such as PhysX, which simulates the objects’
motions.

In the remainder of the paper, we first give a short overview
over related works. In Section 3, we show how to estimate the
contact points, how to update contact points during hand-object
interaction. and how to calculate the forces that are applied to the
virtual object for the physics simulation. Then, in Section 4 we show
qualitative results of our method applied to several interaction tasks.
In Section 5 we present the results of a pilot study and a performance
evaluation.

2 RELATED WORK

3D interaction with virtual objects has recently become an active
research field in Human Computer Interaction and Computer Graph-
ics, with the introduction of 3D interaction systems [15, 31, 38, 42]
and vast improvements of VR technologies over the last couple of
years [1, 3, 4, 16, 17, 20, 21, 27, 33, 45, 50].

Recent kinematic skeleton tracking sensors such as Microsoft
Kinect or Leap Motion made research on real-time human inter-
action systems much more accessible. The Kinect sensor enables
easier hand-gesture and human-activity recognition [49]. Empirical
work [14] has shown that the Leap Motion is a reliable and accurate
system for hand skeleton tracking, which recently got improved with
a new Orion tracking software2, specifically developed for VR en-
vironments. While these two sensors provide good results for hand
tracking, research has since focused on hand interaction methods.
We structure these methods in four different categories to give a
more detailed overview of hand-based 3D interaction systems within
virtual environments.

2https://developer.leapmotion.com/orion/

Kinematic Gesture-Based Approaches. A frequent and sim-
ple type of hand interaction methods relies on kinematic- and gesture-
based interfaces, where a predefined set of gestures is used to per-
form certain assigned actions. Common gestures include circle,
swipe, pinch, screen tap, and key tap gestures [6, 7, 45]. A pinch
detection is often used for detecting intended grasp interactions [25].
One popular example of such a gesture-based interface is the Mi-
crosoft HoloLens [1, 45]. A few predefined hand gestures are de-
tected in real-time to trigger certain interactions with virtual objects,
similar to mouse clicks. Leap Motion recently released Interaction
Engine3, which also makes use of kinematic grasps to perform sim-
ple object transformations. Due to the constrained action space, this
approach is also appealing for Machine Learning, where [26, 36]
for example detect hand gestures for applications such as free hand
control of automotive interfaces. While these interaction approaches
makes sense for certain VR environments, the interaction is artificial,
highly limited in their possibilities, and thus not sufficient for direct
object manipulation.

Heuristic-Based Approaches. These approaches require pre-
defined heuristics or a priori information about the hand and/or
object to perform a limited set of object interactions, mostly ob-
ject grasping [22, 24, 34, 37]. A data-driven grasp method needs to
synthesize prerecorded, real hand data to identify the most similar
one during runtime from a predefined database [22, 24, 37]. Object
interaction is only possible with object shapes [24, 37] or object
categories [22] that are predefined. These requirements induce sig-
nificant drawbacks, including the need for prior information of either
hand and finger poses and/or object shapes, and limitations given by
interaction restrictions when synthesizing real-time hand poses from
the prerecorded grasp database. This significantly limits the practical
application of such methods in unconstrained environments.

Physics-Based Approaches. Entirely physics-based hand in-
teraction systems were recently not widely researched due to the
complexity and challenges, such as speed and stability of the physics
simulation [10], or accuracy of hand tracking [40]. Hilliges et
al. [16] showed with HoloDesk an entirely physics-based interac-
tion system using particles on the hand mesh that induce forces
for object grasping. The method suffers from occlusion problems
due to the tracking hardware especially when grasps are performed.
A finger-based deformable soft body approach on convex objects
using soft pads on rigid finger bones has been proposed by Jacobs
and Froehlich [17]. Limitations are due to the missing palm en-
abling only finger-based interactions and powerful grasps can cause
the soft pads to collapse. In order to increase realism of the in-
teraction, more complex friction models can be used, such as the
Coulomb-Contensou model [39]. Despite the accurate results, the
computational complexity of this model is very high, which limits
its applicability in VR where real-time performance is required. A
more realistic physical simulation of the hand deformations can
also consider the hand flesh [12, 32], however, these approaches
are computationally expensive and themselves require approxima-
tions. Another unconstrained grasping method has been proposed by
Borst and Indugula [4] who use a spring-damper model and haptic
feedback gloves. This approach has limitations due to the reduced
degree-of-freedom per fingertip caused by the gloves. Also, the
exerted forces are only applied with respect to the fingertips, which
limits the grasping possibilities. Another physics-based grasping
algorithm introduced by Nasim and Kim [27] uses a second dynamic
proxy hand. However, since the physics forces are applied through
the proxy hand that gets frozen after a contact occurred, the amount
of interaction possibilities besides grasping and pushing are not clear
and rather limited.

3https://developer.leapmotion.com/unity/

h
h


Figure 2: Estimating the contact force. The contact force fcontact
i is

proportional to the distance from the contact point Ci to the current
location of the intersecting phalanx p j.

Hybrid Approaches. We consider several methods as a hybrid
category since they use certain aspects from different hand inter-
action categories and combine them together. Recent approaches
compute initial contact forces via small particles sampled across the
virtual skin mesh [20, 21]. However, as soon as an a priori defined
force threshold is reached, the virtual object is considered as grasped
and simply set to kinematic, thus following the virtual hand with
global translation and rotation. Other approaches use a mixture
of previously recorded grasps and synthesize new grasps with a
computer graphics physics-driven virtual hand [33, 50]. Since these
methods rely on prior knowledge or a database of grasps, interactions
are still limited.

Comparing our physics-based hand interaction system to these
related works, our method is entirely physics-based, fully uncon-
strained in its nature, and very efficient enabling integration into
computational expensive VR scenes. Besides having such an uncon-
strained property, our algorithm also supports stable motion controls
similar to methods that focus primarily on grasping [50]. There-
fore, we explicitly model exerted contact forces on contact points
of the virtual phalanges. We do not rely on any predefined data,
states, or conditions, which allows us to perform unconstrained hand
and finger interactions known from the real world with arbitrary
virtual objects. Our method also allows for finger dexterity and
thus unconstrained and dexterous 3D object manipulation during
interaction.

3 PHYSICS-BASED HAND-OBJECT INTERACTION

In this section we give a detailed description of our algorithm and ex-
plain the underlying physical principles that we use for our approach.
First, we show how to identify interactions between the physical
user’s hand and the virtual objects, and contact points between them.
Using these contact points, we calculate the forces that are induced
by the hand interaction and apply them to the virtual object. We
further show how to implement them efficiently into an existing
physics engine.

3.1 Phenomena of Friction

Friction is a very complex phenomena. It models the tangential
reaction force between two surfaces in contact. Several models
have been introduced to simulate friction as close to real friction as
possible. In reality, friction depends on many components such as
the surface materials, temperature, wear, the topology of the objects,
relative velocity, or the presence of lubrication.

The Coulomb Friction Model is by far the most well-known model
to approximate the friction phenomena. It is a rather simple yet good
approximation. For other models to approximate friction, we can
refer to [8, 11, 19, 29], for example. However, since our contribution
relies in realistic hand interaction method for real-time VR, we show
that the Coulomb model presents a good trade-off between accuracy
and computational efficiency.

3.2 Hand-Object Contact Points
In order to compute the forces which are applied by the hands to the
virtual objects, we first need to identify the contact points between
the user’s real hand and the virtual objects. As we mentioned in the
introduction, hand-object interpenetration can become a significant
problem in physics engines, and we explain here how we efficiently
solve the interpenetration problem when estimating accurate contact
points between the virtual hand model and the virtual objects.

A contact point is defined as a 3D point that lies both on the
hand surface and the surface of the virtual object. To identify such
a point, we rely on the simplified hand model, which is made of
simple shapes: Three capsules per finger and one cuboid for the
palm. Each of these shapes can have one contact with the object. In
practice, we continuously track the 3D pose of this hand model in
terms of 3D location and orientation of each phalanx using the Leap
Motion device.

As the real hand can penetrate the virtual objects, it is not clear
how to define meaningful contact points. To do so, we propose the
following method: We continuously look for potential collision by
defining a small threshold distance around the virtual objects. We
create a contact point when a point on the hand model’s surface
gets closer to a virtual object than this threshold. This event can be
detected efficiently using a physics engine. Once we detected a point
on the hand that is closer to the object surface than the threshold, we
take the closest 3D point on the object surface to this point as the
contact point, denoted Ci. We will use this point to compute and
apply the different forces sampled within a small area around this
point as explained below.

In practice, the human skin is a soft body and forms a contact
area rather than a single contact point [13], which helps to stabilize
exerted forces when being in direct contact and keeps control over
the object manipulation. We approximate this property by adding
multiple contact points sampled on the surfaces of the hand and of
the object around the initial contact point. Contacts on the thumb and
the palm are sampled over a wider area than the other four fingers.

Updating the contact points during object interaction represents a
significant challenge due to the interpenetrating property of the real
hand and virtual objects. Updating the contact points is necessary
when a contact is slipping along the surface of an object. A well
known method to update contact points on the object’s surface is
the God-Object approach [18, 30]. Here we use a simple ray-based
technique to obtain the contact points as it is sufficient for our
purpose. Such methods can be found within the field of haptic
rendering [2, 43] that requires very efficient algorithms.

C1 C2 C3 C4

p1

p2
p3

p4

p5

p6

p7

R1
R2 R3

R4, R5

p8

n1 n2 n3 n4

p9

X
X

Figure 3: Updating the contact points along the object’s surface using
raycasting. The image illustrates the trajectory of one phalanx inside
a 3D voxelized virtual object from a top-down view. Blue arrows depict
static (stable) motions, red arrows dynamic (slippy) motions, and Rn
illustrates rays in direction of p j.



As we explain below in Section 3.3, we distinguish between
sliding (dynamic) and stable (static) contact states. As long as a
contact remains in the stable state, there is no need to update the
contact point since the contact point is not moving. However, when
we detect a sliding contact state, we estimate a new contact point on
the objects surface. We illustrate our solution in Fig. 3. For more
details see Section 3.5.

3.3 Computing the Contact Force

Our method considers the normal- and tangential component of the
contact force. The contact force is computed for every phalanx
in contact with an object and applied to the corresponding contact
area. As we will explain, the Coulomb friction model computes the
tangential friction forces from the tangential component of these
forces, to take into account the frictions along the surfaces. The
Coulomb friction model distinguishes between two types of friction:
dynamic and static friction. Static friction happens on stable contact
points and has usually a higher friction coefficient, whereas dynamic
friction occurs when objects are in relative motion, that is, when
an object slides along the surface of the hand. The criterion to
distinguish between static and dynamic friction forces is based on a
’friction cone’, as explained below.

Contact Force. We define the contact force fcontact
i as:

fcontact
i = γ(Ci−p j) , (1)

where Ci denotes the contact point on the object’s surface, and p j
is the 3D centroid of the hand phalanx, which is tracked by the
Leap Motion sensor. This formulation resembles a simple spring
model [5]. When the user interacts with an object, p j intersects the
object’s volume since the hand model follows the pose estimated for
the user’s real hand. This formulation is illustrated in Fig. 2. For the
experiments in this paper, we set γ = 100. We also investigated a
way to automatically adjust γ with respect to the physical properties
of the object (volume, mass, surface material) to ensure that the user
can bring up enough force even for small or heavy objects. We refer
to the supplemental material for a more detailed discussion.

With the expression of Eq. (1), the direction of the contact force
is dynamically updated according to the phalanx’s current position,
thus allowing the user to control the force finely.

The normal component of the contact force is calculated as:

fn-contact
i = (fcontact

i ·ni)ni , (2)

where ni is the surface normal vector of the object mesh at the contact
point Ci. The normal component of the contact force is applied
directly to the object. The Coulomb friction model computes the
force fT -contact

i applied in the tangential direction from the tangential
component of the contact force to take into account the frictions
along the object surface.

The expression of the tangential component of the contact force
is:

ft-contact
i = fcontact

i − fn-contact
i . (3)

The expression of the tangential force fT -contact
i depends whether or

not the contact force fcontact
i is inside the friction cone. The friction

cone is defined by the Coulomb friction model as a cone with the
vertex corresponding to the contact point and the axis along the
surface normal ni. The contact force fcontact

i is inside the friction
cone if and only if the following condition is true:

F inside
i = fcontact

i ·ni > 0 ∧ ‖ft-contact
i ‖≤ µ

st
i (fcontact

i ·ni) , (4)

where µst
i is the static friction coefficient at the surface location of

the contact point Ci.

The tangential force fT -contact
i can then finally be computed as:

fT -contact
i =

{
ft-contact
i if F inside

i is true
µ

dyn
i · ft-contact

i otherwise.
(5)

This force lets the object slide along the hand surface or on the con-
trary lets the hand grasp firmly by counteracting gravity, depending
on its magnitude and direction, while taking into account the fric-
tion properties of this surface. We finally apply the forces fT -contact

i
and fn-contact

i at contact point Ci. For the material-dependent fric-
tion coefficients µst and µdyn, we use values from experimental
data [48].

Tangential Friction Force The force from the tangential part
of the contact force transfers the tangential motion of the hand onto
the object in the direction of the hand movement. This force allows
the hand to actually move the object. External forces such as gravity
or collision forces can also influence the tangential component.

Fig. 4 illustrates the importance of the tangential component
that allows to firmly pull an object with the hand motion. The
hand moves for a small distance within the time interval ∆t. This
movement induces an increase of the tangential component of the
contact force since the phalanges are moving away in tangential
direction from the contact points. If the increase of the tangential
component within the time interval ∆t is too large in relation to the
normal component, the contact switches to the dynamic state and
the contact point starts to slip on the object’s surface. The same
principle can be observed under the influence of external forces
such as gravity or collision forces. Fig. 6 illustrates gravitational
acceleration during dynamic contact states which induce an increase
of the tangential portion and thus cause the object to slip between
the phalanges since the contact was not stable. Depending on the
contact direction of each contact force, the global hand motion can
increase the tangential or normal component of each friction cone
and consequentially may contribute to its normal part.

We show a 2D projection of a friction cone in Fig. 5. The left
figure shows the friction cone for the case when the hand motion
is in the same direction as the initial contact direction of a phalanx.
This consequentially increases the normal part of the resulting force
allowing for larger tangential forces according to the Coulomb fric-
tion model, and the friction cone enlarges from the dashed line to the
solid line. The same applies for collision forces as external forces
which would occur in opposite direction of exerted contact forces.

The right figure of Fig. 5 shows the case when the global hand
motion is in strong tangential direction to the surface. The new re-
sulting contact force shows an increase of the tangential component
and does not contribute to the normal component, thus it does not
change the friction cone, but it increases the tangential component
that is applied to the object and decreases the maximum of the al-
lowed tangential force according to the second expression of Eq. 4.
Again, the same principle occurs as a consequence of external forces.
If the gravitational acceleration of an object is not counterbalanced
by sufficient contact force, an object would slip between fingers
during a grasp interaction increasing the tangential component of
the dynamic contact state.

3.4 Visual Representation of the Hand
For the visual representation of the hand, we use a semi-opaque
stylized rigged hand mesh. As pointed out by Nasim and Kim [27], a
semi-opaque property helps users to receive a better depth perception
and thus supports interaction planning. We have noticed that a
stylized hand model has the benefit of avoiding uncomfortable user
experiences, which can happen with too realistic hand models [47].

Since our tracked hand is able to interpenetrate the virtual object,
we render an opaque hand mesh [35] with the pose from the moment
an interaction occurred. To avoid visual interpenetration, we freeze



w

t = 0t = 1

c c
ccc

c

c
c

c

c c
ccc

c

c
c

c

1 2

65
4

7
8

1 2

65
4

7
8

3
fT-contactfT-contactfT-contact

111 fT-contactfT-contactfT-contact
222

fT-contactfT-contactfT-contact
333

fT-contactfT-contactfT-contact
444

fT-contactfT-contactfT-contact
555

fT-contactfT-contactfT-contact
666

fT-contactfT-contactfT-contact
777

fT-contactfT-contactfT-contact
888

Figure 4: Illustration of an increased tangential force f T−contact
i from

t = 0 over t = 1 causing an object to move in the the direction of the
global hand motion during contact.

n i

Object

STATIC

DYNAMIC

Object

STATIC

DYNAMIC

hand motion

fi
 n-contact

 (hand motion)
+

gravitational force

fi
 n-contact

 (bone)

fi
 t-contact

 (bone) n i

fi
 t-contact

 (bone)

fi
 t-contact

 (gravity)

fi
 contact

fi
 contact

+

Figure 5: Left: contribution of the global hand motion to the normal
portion of the established contact. Right: increasing tangential force
due to the slipping state caused by gravitational acceleration.

f4
T-contact

f3
T-contact

f5
T-contact

w

Gravity Gravity

f1
T-contact

f2
T-contact

f1
T-contact f2

T-contact

f3
T-contact

f4
T-contact

f5
T-contact

Figure 6: An example of increased tangential portion by gravitational
acceleration as an example of external force. The black arrow depicts
the gravity, the red arrows illustrates the tangential friction force to
counteract gravitational acceleration during dynamic contact state.

Figure 7: Left: Semi-transparent hand mesh rendered before contact.
Right: Opaque hand mesh rendered during contact.

the hand mesh and update its rigid position by applying the relative
global transformation of the virtual object. The hand mesh can still
be slightly updated and refined to some degree once other fingers
interact with the object. This ensures that the user can see a reason-
able rendered hand pose of its interaction which is not penetrating or
causing any confusing visuals. As shown in Fig. 7, this should help
the user to constantly have a reasonable render of the interacting
hand pose and avoid visual interpenetration.

We also considered the possibility of updating the hand mesh
when a surface point of a finger slips. To do so, we selectively
freeze fingers being in contact and independently apply the relative
transformation of a moving surface point onto the corresponding
finger. In this way, each finger is updated individually. However,
depending on the translation, this may cause visually distorted hand
meshes. To take into account the constraints between the fingers,
one could use for example a spring-damper model [5], which limits
the free motion for each individual phalanx. We will explore this
direction in future work.

3.5 Implementation Aspects
We implemented our approach in Unity 5 with PhysX 3. We provide
here several important implementation details, which are critical
for efficient integration within the physics engine. These include
finding and updating the contact points; applying the forces within
the PhysiX engine, handling arbitrary, possibly non-convex, object
shapes; and correctly handling the interpenetration of hand and
object.

Contact Point Estimation. Our solution to efficiently identify
accurate contact points uses the collision detection of Unity 5. Even
if there is no real collision between the hand model and the virtual
objects in practice, we are able to estimate contact points: We define
a very small Default Contact Offset, a property of the physics engine,
as a threshold to fire a collision event before the actual contact
happens as explained in Section 3.2. The Default Contact Offset
acts as a margin at which point the collision detection of Unity 5

fires collision events. We set the collision detection mode of Unity
to Continuous Dynamic to support fast hand movements. From this
collision event we receive a contact point and all involved colliders.
We use this early contact point to manually cast a ray in the direction
of the center of the corresponding sub-collider of the virtual object
to get the actual surface point.

Surface Point Updates. As long as the contact remains in the
static state, the contact points on the object’s surface must not be
updated. As soon as the state switches to dynamic, we update the
corresponding contact point along the object’s surface as illustrated
in Fig. 3. From the previous contact point, we apply a transformation
as a small offset in normal direction of the surface and cast a ray in
direction of the interpenetrating phalanx position p j. This solution
accounts for an engine limitation that does not allow for collision
detection if a ray originates inside a collider. The ray cast ensures
that we can estimate a new contact point directly on the object
surface. Our solution detects occluding surface parts of the object
by comparing the orientation of the surface normal vector of the
original estimated contact point with the normal orientation of the
newly calculated surface point. This ensures that a contact remains
in a blocked area illustrated with the rays R4 and R5 in Fig. 3. Our
proposed solution allows for efficient surface point updates without
the need for additional God-Objects for every phalanx. Scene queries
such as raycasts are very efficient in the Nvidia PhysiX engine and
can be further accelerated by using Volume-Caches and Single Object
Caching.

Applying Forces. Our approach acts as a middleware between
the hand input and the Nvidia PhysiX physics engine. We compute
the contact force of each phalanx for every frame and apply them via
the Application Programming Interface (API) of the physics engine.
More precisely, we specify the magnitude and direction of the force
as well as the actual contact point on the object’s surface where the
force is applied. In our implementation, the external forces such as
gravitational acceleration and collision forces between objects are
handled by the physics engine internally.



Figure 8: From left to right, top down: Palmar grasping, Grasping an object and use it as a tool on other objects, lifting a figurine using only the
palm, Handover a virtual object midair to another hand, Sliding an object along a path, Using both hands to pull out a block from a tower.

Arbitrary Object Shapes. Physics engines have problems with
complex, non-convex object meshes and only support convex objects
or primitive shapes [10, 41]. For example, Nvidia PhysX 3, which
we use in this work, does not support collisions between concave
mesh colliders and dynamic non-kinematic rigid bodies. A com-
mon solution is to approximate a non-convex shape by its convex
hull [41]. However, convex mesh approximations are too imprecise
representations of the object mesh and this would significantly limit
the interaction possibilities for fine-grained dexterous manipulation.
Therefore, we approximate the concave objects with small voxels,
by using a Finite Element Method [46]. The voxelization is more
efficient than real concave mesh colliders and is easy to configure
for different Levels of Detail.

Hand Model Interpenetration. To avoid interpenetration be-
tween the hand model and the virtual object, we disable the rigid
body property of the corresponding phalanx once we have estimated
a contact point. In Unity, physics colliders that are set as trigger do
not cause real collision detection nor collision resolution. By setting
the corresponding phalanges as triggers, we prevent the engine to
generate any physical reactions between hand phalanges and the
virtual objects, but we are still fully capable to track the current 3D
transformation of the phalanges.

4 RESULTS

We present here several interactions that demonstrate the capabilities
of our approach. During all our tests, our approach could manage sta-
ble frame-rates without any performance issues. We added complex
shaders, foliage, transparency, lighting, etc. to stress the graphics
engine. Still, the test scenes run at over 60fps on an Intel i7 with
2.6GHz with an NVIDIA GTX 980M graphics card. We show differ-
ent samples in Fig. 8. The illustrated interactions include: grasping
an object using fingers and palm, grasping an axe to hit a tower of
cubes that subsequently collapses, lifting a virtual object using only
the palm, handover a virtual cube midair from one hand to the other,
sliding a cylindrical head sculpture along a path depicted by small
stones on the ground and finally pulling a block from a tower using
both hands similar to the game Jenga.

5 EVALUATION

In this section, we evaluate our approach for hand-object interaction.
We conducted a pilot study among the users that participated to the
evaluation process. In addition to that, we provide a performance
analysis for the physics simulation with different configurations
varying the number of contacts between the hand skeleton and virtual
objects. We show that our method, while producing realistic object
manipulations, is capable of real-time performance.

Figure 9: Scene used for evaluation. It shows a chessboard with
a cube object, and a user is asked to move virtual objects (cubes,
figurines, etc.) from a any position to a specified location on the
chessboard shown in red.

5.1 Pilot Study
We created a simple VR environment as shown in Fig. 9 where
the users could get familiar with each of the evaluated interaction
methods and get a sense of its capabilities. We used the Oculus
Rift DK2 to display the 3D scene to the users and the Leap Motion
sensor mounted on the front plate. 12 different users participated in
our evaluation. All the users were familiar with VR, and half of the
users had hands-on experiences with VR.

We compare our approach to two other recent real-time ap-
proaches. The first baseline is a purely kinematic approach, which
is our re-implementation of the kinematic part of [20]. In this ap-
proach, the object is considered as grasped when some measured
forces reach a self defined threshold. Then the global transformation
of the hand is applied to the object which is set to kinematic. We
re-implemented the same kinematic motion control, while we sim-
plified the prior grasp condition. As a second baseline, we use an
industry method, the Leap Motion Interaction Engine 1.04, which
is also a kinematic approach and very efficient for object place-
ment due to its simplicity. We placed several different objects in
the scene, however for the Interaction Engine we could only place
simple objects due to its strict limitations.

After the users felt familiar with the interaction method, they
were asked to move a virtual object to a specific target location on
the chessboard. The target positions were randomized. This gave
the users a chance to use each interaction system for a practical use
case.

As we conducted the pilot study after some tries, the users were
given several questions as shown in Table 1. Each question can
be rated on a Likert Scale from 1 to 5, 5 being the best grade.
’Naturalness’ refers to the question ”How natural does the interaction
feel?” and ’Diversity’ refers to the question ”Rate the diversity of
interaction possibilities”. The exact formulation of all the questions
are given in the supplementary material.

4Publicly available at https://developer.leapmotion.com/

unity/

https://developer.leapmotion.com/unity/
https://developer.leapmotion.com/unity/


The Shapiro-Wilk test indicated that the normality assumption
does not hold for our data. We therefore rely here on the non-
parametric Friedman test to identify statistically significant differ-
ences in the data and report the corresponding chi-squared test statis-
tics. When analyzing the results from Table 1, we obtain statically
significant results for Naturalness (χ2(2) = 16.68, p < 0.0005), for
Usefulness (χ2(2) = 20.53, p < 0.0005), and Diversity (χ2(2) =
19.51, p < 0.0005). The results for Easy learning are not statisti-
cally significant (χ2(2) = 5.11, p = 0.078).
Further, we apply the post hoc Wilcoxon Signed-Rank test on statisti-
cally significant data. The test indicated that the participants strongly
agreed that our approach was perceived more natural to use (Natural-
ness) compared to the Interaction Engine (Z =−2.689, p = 0.0035)
and [20] (Z =−2.807, p = 0.0025). Also, the participants mutually
agreed that our approach allows more diverse interactions (Diver-
sity) than the Interaction Engine (Z =−2.727, p = 0.0032) and [20]
(Z− 2.824, p = 0.0024). The ratings for usefulness were also sig-
nificantly higher for our method than for the Interaction Engine
(Z =−2.421, p = 0.0077) and [20] (Z =−2.712, p = 0.0034).

5.2 Performance Analysis
We evaluate our method in terms of real-time performance, since
computational efficiency is one of the most critical aspects for VR
integration. The frame rate analysis, presented in Fig. 10, has been
performed with the same hardware setup as reported in Section 4.
Each image shows the number of phalanges being in contact with
an object, the number of sampled contact points exerting forces (8
samples per contact point), and the computation time over multiple
frames. We state the total computational cost of the physics simu-
lation, which includes all physics simulations of the scene, as well
as the simulation of our interaction model. The simulation is very
fast, taking only 0.6ms for 6 phalanges, or 1.5ms for 32 phalanges,
which is significantly faster than the timings reported by Talvas et
al. [39], who use a more complex friction model. The evaluation
clearly shows the efficiency of our approach, which is essential for
real-time applications.

5.3 Discussion
The users responded very positively to our physics-based method
since there are many interaction possibilities and it feels more real-
istic and natural. Our experimental evaluations showed that users
preferred to use friction to let the object slide between fingers and the
chessboard. They tried to use that interaction also during the evalua-
tions of the other two methods, but those approaches do not support
that, at least not in a similar way. Users responded less positively to
the other two methods because these methods felt very artificial and

(a) 6 Phalanges (48 contact samples) 0.6ms

(b) 16 Phalanges (128 contact samples) 0.9ms

(c) 32 Phalanges (256 contact samples) 1.5ms

Figure 10: Performance analysis of the physics computation. The
graph illustrated the run-time of the physics simulation with varying
number of phalanges being in contact. Each contact is sampled with
8 contact samples within the patch area. The black bar depicts one
frame in the timeline for which we state the simulation time.

Input method→ Ours Re-impl. Interaction
User question ↓ [20] Engine
Naturalness 4(1) 2(0.75) 2.5(2)
Usefulness 4.5(1) 2(0) 3(1)
Diversity 4.5(1) 2(1.75) 3(1)
Easy learning 3(1) 4(1.75) 4.5(1)

Preference 8 1 3

Table 1: Results of our pilot study. We asked the users to answer
several questions about the interaction method and rate them on
a Likert Scale from 1 to 5, with 5 being the favourable value. We
report median and inter-quartile range. Bold results indicate statistical
significance.

limited since there is no friction contact possible. While the users
rated the naturalness, usefulness, and diversity of our method much
higher than for the other methods, they stated that the other methods
were easier to learn. However, the conducted statistical tests indicate
the Easy learning criteria as not statistically significant. Overall, 8
out of 12 users preferred our physics-based method over the other
two methods. We conclude that our method is more realistic as
it allows for more diverse interactions. Despite the simplicity of
the Coulomb friction model, our approach produces realistic ob-
ject manipulations and proves to be capable of achieving real-time
performance for VR applications.

6 CONCLUSION AND FUTURE WORK

In this work we presented an efficient real-time approach for un-
constrained hand object interaction in Virtual Reality environments.
We proposed to rely on the Coulomb model to introduce friction,
we showed how to efficiently implement it, and through our exper-
iments and evaluation, we showed that it results in a natural way
to interact with virtual objects. However, the Coulomb model is
still a simple approximation, we consider to integrate more complex
friction models, which need to be carefully selected with respect
to the computational performance. Another interesting direction to
explore are real-time simulations of soft-bodies, for example through
particle-based simulation [23]. We believe that our work will pro-
vide a solid basis for the development of unconstrained hand object
interaction in VR environments.

ACKNOWLEDGMENTS

The authors wish to thank Christian Pirchheim for valuable dis-
cussions, and the participants of the user study for their time and
feedback.

REFERENCES

[1] L. Avila and M. Bailey. Augment your reality. Computer Graphics
and Applications, 36(1):6–7, Jan.–Feb. 2016.

[2] C. Basdogan, C.-H. Ho, and M. Srinivasan. Ray-based haptic rendering
technique for displaying shape and texture of 3d objects in virtual
environments. American Society of Mechanical Engineers, Dynamic
Systems and Control Division, 61:77–84, Jan. 1997.

[3] H. Benko, R. Jota, and A. Wilson. MirageTable: Freehand interaction
on a projected augmented reality tabletop. In Proc. CHI, pp. 199–208.
ACM, 2012.

[4] C. W. Borst and A. P. Indugula. Realistic virtual grasping. In Proc. VR,
pp. 91–98. IEEE, 2005.

[5] C. W. Borst and A. P. Indugula. A spring model for whole-hand
virtual grasping. Presence: Teleoperators and Virtual Environments,
15(1):47–61, Feb. 2006.

[6] A. Bracegirdle, T. Mitrovic, and M. Mathews. Investigating the usabil-
ity of the leap motion controller: Gesture-based interaction with a 3D
virtual environment. Technical report, University of Canterbury, NZ,
2014.



[7] V. Buchmann, S. Violich, M. Billinghurst, and A. Cockburn. FingAR-
tips: gesture based direct manipulation in augmented reality. In Proc.
GRAPHITE, pp. 212–221. ACM, 2004.

[8] W.-H. Chen, D. J. Ballance, P. J. Gawthrop, and J. O’Reilly. A nonlinear
disturbance observer for robotic manipulators. IEEE Transactions on
Industrial Electronics, 47(4):932–938, Aug. 2000.

[9] J. Egger, M. Gall, J. Wallner, P. Boechat, A. Hann, X. Li, X. Chen, and
D. Schmalstieg. Integration of the HTC Vive into the medical platform
MeVisLab. In Proc. SPIE, pp. 10138 – 10138 – 7. SPIE, 2017.

[10] T. Erez, Y. Tassa, and E. Todorov. Simulation tools for model-based
robotics: Comparison of Bullet, Havok, MuJoCo, ODE and PhysX. In
Proc. ICRA, pp. 4397–4404. IEEE, 2015.

[11] M. Gafvert. Comparisons of two dynamic friction models. In Proc.
ICCA, pp. 386–391. IEEE, 1997.

[12] C. Garre, F. Hernandez, A. Gracia, and M. A. Otaduy. Interactive
simulation of a deformable hand for haptic rendering. In Proc. WHC,
pp. 239–244. IEEE, 2011.

[13] J.-P. Gourret, N. M. Thalmann, and D. Thalmann. Simulation of object
and human skin formations in a grasping task. ACM SIGGRAPH,
23(3):21–30, July 1989.

[14] J. Guna, G. Jakus, M. Pogačnik, S. Tomažič, and J. Sodnik. An
analysis of the precision and reliability of the leap motion sensor and
its suitability for static and dynamic tracking. Sensors, 14(2):3702–
3720, Feb. 2014.

[15] C. Hand. A survey of 3D interaction techniques. Computer Graphics
Forum, 16(5):269–281, Dec. 1997.

[16] O. Hilliges, D. Kim, S. Izadi, M. Weiss, and A. Wilson. HoloDesk:
direct 3D interactions with a situated see-through display. In Proc.
CHI, pp. 2421–2430. ACM, 2012.

[17] J. Jacobs and B. Froehlich. A soft hand model for physically-based
manipulation of virtual objects. In Proc. VR, pp. 11–18. IEEE, 2011.

[18] J. Jacobs, M. Stengel, and B. Froehlich. A generalized god-object
method for plausible finger-based interactions in virtual environments.
In Proc. 3DUI, pp. 43–51. IEEE, 2012.

[19] R. Kelly, J. Llamas, and R. Campa. A measurement procedure for
viscous and coulomb friction. IEEE Transactions on Instrumentation
and Measurement, 49(4):857–861, Aug. 2000.

[20] J. Kim and J. Park. Physics-based hand interaction with virtual objects.
In Proc. ICRA, pp. 3814–3819. IEEE, 2015.

[21] J.-S. Kim and J.-M. Park. Direct and realistic handover of a virtual
object. In Proc. IROS, pp. 994–999. IEEE/RSJ, 2016.

[22] Y. Li, J. L. Fu, and N. S. Pollard. Data-driven grasp synthesis using
shape matching and task-based pruning. IEEE Transactions on Visual-
ization and Computer Graphics, 13(4):732–747, July–Aug. 2007.

[23] M. Macklin, M. Müller, N. Chentanez, and T.-Y. Kim. Unified particle
physics for real-time applications. ACM Transactions on Graphics,
33(4):153:1–153:12, July 2014.

[24] A. T. Miller, S. Knoop, H. I. Christensen, and P. K. Allen. Automatic
grasp planning using shape primitives. In Proc. ICRA, pp. 1824–1829.
IEEE, 2003.

[25] M. Moehring and B. Froehlich. Effective manipulation of virtual
objects within arm’s reach. In Proc. VR, pp. 131–138. IEEE, 2011.

[26] P. Molchanov, X. Yang, S. Gupta, K. Kim, S. Tyree, and J. Kautz.
Online detection and classification of dynamic hand gestures with
recurrent 3D convolutional neural network. In Proc. CVPR, pp. 4207–
4215. IEEE, 2016.

[27] K. Nasim and Y. J. Kim. Physics-based interactive virtual grasping. In
Proc. HCIK, pp. 114–120. Hanbit Media, Inc., 2016.

[28] M. Oberweger, P. Wohlhart, and V. Lepetit. Hands deep in deep learning
for hand pose estimation. In Proc. CVWW, pp. 21–30. Graz University
of Technology, 2015.

[29] H. Olsson, K. J. Åström, C. C. De Wit, M. Gäfvert, and P. Lischin-
sky. Friction models and friction compensation. European journal of
control, 4(3):176–195, Mar. 1998.

[30] M. Ortega, S. Redon, and S. Coquillart. A six degree-of-freedom

god-object method for haptic display of rigid bodies with surface prop-
erties. IEEE Transactions on Visualization and Computer Graphics,
13(3):458–469, May–June 2007.

[31] V. I. Pavlovic, R. Sharma, and T. S. Huang. Visual interpretation
of hand gestures for human-computer interaction: A review. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19(7):677–
695, July 1997.

[32] A. G. Perez, G. Cirio, F. Hernandez, C. Garre, and M. A. Otaduy. Strain
limiting for soft finger contact simulation. In Proc. WHC, pp. 79–84.
IEEE, 2013.

[33] N. S. Pollard and V. B. Zordan. Physically based grasping control from
example. In Proc. SCA, pp. 311–318. ACM, 2005.

[34] M. Prachyabrued and C. W. Borst. Virtual grasp release method
and evaluation. International Journal of Human-Computer Studies,
70(11):828–848, Nov. 2012.

[35] M. Prachyabrued and C. W. Borst. Visual feedback for virtual grasping.
In Proc. 3DUI, pp. 19–26. IEEE, 2014.

[36] S. S. Rautaray and A. Agrawal. Vision based hand gesture recogni-
tion for human computer interaction: a survey. Journal of Artificial
Intelligence Research, 43(1):1–54, Jan. 2015.

[37] H. Rijpkema and M. Girard. Computer animation of knowledge-based
human grasping. SIGGRAPH Computer Graphics, 25(4):339–348,
July 1991.

[38] D. J. Sturman, D. Zeltzer, and S. Pieper. Hands-on interaction with
virtual environments. In Proc. UIST, pp. 19–24. ACM, 1989.

[39] A. Talvas, M. Marchal, C. Duriez, and M. A. Otaduy. Aggregate con-
straints for virtual manipulation with soft fingers. IEEE Transactions
on Visualization and Computer Graphics, 21(4):452–461, Apr. 2015.

[40] J. Taylor, L. Bordeaux, T. Cashman, B. Corish, C. Keskin, T. Sharp,
E. Soto, D. Sweeney, J. Valentin, B. Luff, et al. Efficient and precise
interactive hand tracking through joint, continuous optimization of
pose and correspondences. ACM Transactions on Graphics, 35(4):143,
July 2016.

[41] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for
model-based control. In Proc. IROS, pp. 5026–5033. IEEE/RSJ, 2012.

[42] C. Von Hardenberg and F. Bérard. Bare-hand human-computer interac-
tion. In Proc. PUI, pp. 1–8. ACM, 2001.

[43] L. Wei and A. Sourin. Function-based approach to mixed haptic effects
rendering. The Visual Computer, 27(4):321–332, Apr. 2011.

[44] C. A. Wingrave, B. Williamson, P. D. Varcholik, J. Rose, A. Miller,
E. Charbonneau, J. Bott, and J. J. LaViola Jr. The wiimote and beyond:
Spatially convenient devices for 3D user interfaces. Computer Graphics
and Applications, 30(2):71–85, Mar.–Apr. 2010.

[45] D. Yim, G. N. Loison, F. H. Fard, E. Chan, A. McAllister, and F. Maurer.
Gesture-driven interactions on a virtual hologram in mixed reality. In
Proc. ISS Companion, pp. 55–61. ACM, 2016.

[46] D. P. Young, R. G. Melvin, M. B. Bieterman, F. T. Johnson, S. S.
Samant, and J. E. Bussoletti. A locally refined rectangular grid finite
element method: application to computational fluid dynamics and
computational physics. Journal of Computational Physics, 92(1):1–66,
jan 1991.

[47] E. Zell, C. Aliaga, A. Jarabo, K. Zibrek, D. Gutierrez, R. McDonnell,
and M. Botsch. To stylize or not to stylize?: The effect of shape and
material stylization on the perception of computer-generated faces.
ACM Transactions on Graphics, 34(6):184:1–184:12, Nov. 2015.

[48] M. Zhang and A. Mak. In vivo friction properties of human skin.
Prosthetics and Orthotics International, 23(2):135–141, Aug. 1999.

[49] Z. Zhang. Microsoft kinect sensor and its effect. IEEE Multimedia,
19(2):4–10, Feb. 2012.

[50] W. Zhao, J. Zhang, J. Min, and J. Chai. Robust realtime physics-based
motion control for human grasping. ACM Transactions on Graphics,
32(6):207, Nov. 2013.

[51] C. Zimmermann and T. Brox. Learning to estimate 3D and pose from
single RGB images. In Proc. ICCV, pp. 4903–4911. IEEE, 2017.


	Introduction
	Related Work
	Physics-Based Hand-Object Interaction
	Phenomena of Friction
	Hand-Object Contact Points
	Computing the Contact Force
	Visual Representation of the Hand
	Implementation Aspects

	Results
	Evaluation
	Pilot Study
	Performance Analysis
	Discussion

	Conclusion and Future Work

