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Abstract

In this paper, we present a new 3D tracking approach for self-localization in urban
environments. In particular, we build on existing tracking approaches (i.e., visual odom-
etry tracking and SLAM), additionally using the information provided by 2.5D maps of
the environment. Since this combination is not straightforward, we adopt ideas from se-
mantic segmentation to find a better alignment between the pose estimated by the tracker
and the 2.5D model. Specifically, we show that introducing edges as semantic classes
is highly beneficial for our task. In this way, we can reduce tracker inaccuracies and
prevent drifting, thus increasing the tracker’s stability. We evaluate our approach for two
different challenging scenarios, also showing that it is generally applicable in different
application domains and that we are not limited to a specific tracking method.

1 Introduction
Accurate geo-localization of images is crucial for applications such as outdoor Augmented
Reality (AR), autonomous driving, mobile robotics and navigation. Since GPS and compass
information are often not precise enough, especially in urban environments, there has been
a considerable scientific interest in computer vision methods that register and track mobile
devices within a global reference frame.

It is possible to rely on pre-registered images from the surroundings to obtain an accurate
3D location and orientation [23, 24]. However, such methods quickly become impractical, as
many images need to be captured and registered in advance. Moreover, such pre-registered
image collections typically capture only one specific appearance of the recorded scene, and
matching them under different illumination or season conditions is still difficult.

In this paper, we aim for a scalable and efficient method. Instead of relying on pre-
registered images, we prefer to use 2.5D maps, more exactly maps of the buildings’ outlines
and their approximate heights. Using 2.5D maps for localization is not new [2, 21, 26]; they
are attractive as they are broadly available 1. However, their nature is of course very different
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from images, especially because they are not textured, and this makes them difficult to use.
In addition, we would like to exploit temporal information and embed this approach into a
tracking framework.

Thus, the main contribution of the paper is a novel 3D tracking method, where the abso-
lute information provided by a semantic segmentation of the input image is used in order to
compensate for typical tracking inaccuracies such as drift. Moreover, regarding the semantic
segmentation, we show that considering rather abstract classes such as the buildings’ edges
is particularly important for the task at hand. In addition, to exploit the information given
by 2.5D maps, and as illustrated in Fig. 1, we align a 3D rendering created from these 2.5D
maps with a semantic segmentation of the input images. This can be done by maximizing the
image likelihood over the pose, based on the rendering from the pose and the semantic seg-
mentation. Thus, as a second contribution, we introduce an efficient method to compute this
likelihood. We use the angles about the vertical axis provided by accelerometers to rectify
the input image such that the columns of the image correspond to vertical lines in 3D. Con-
trary to the other measures, these angles are very reliable. We can thus simply finely sample
the pose space around an initial prediction to obtain a very good pose estimate efficiently.

In the remainder of this paper, we first discuss related work in Sec. 2. We then present our
3D tracking approach exploiting 2.5D maps and semantic segmentation in Sec. 3. Next, the
thus obtained results on two challenging scenarios, compared to valid baselines, are shown
in Sec. 4. Finally, we summarize and conclude the work in Sec. 5.

Figure 1: We propose an efficient method to geo-localize video sequences by aligning a
simple 2.5D map (left) with the semantic segmentation of the frames (middle). The aligned
model is overlaid over the frames (right).

2 Related Work
A core requirement for outdoor AR systems, autonomous driving or mobile robotics is an
accurate, robust and large-scale camera registration in a global reference frame. Early works
tried to tackle the problem by using GPS and compass sensor information [9]. Since this
is often not accurate enough, image-based localization techniques have been developed in
order to improve the computed camera pose estimate.

Such approaches usually take as input one or more camera images and optionally prior
information from device sensors. Using this information, the 3D position or full 6 degrees
of freedom (DoF) pose of the input image can be computed by matching 2D image points to
pre-registered 3D scene points stored in a database obtained from pre-captured scene images.
For example, [24] performs image-based localization based on a database that contains 20km
of urban street-side imagery. [23] tackles the problem by an active correspondence search,
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combining both search directions when matching points, i.e., 2D-to-3D and 3D-to-2D, which
results in improved accuracy and performance.

Despite using advanced matching strategies, though, a core problem of these approaches
remains their limited scalability, since many images need to be captured in advance for each
new scene in order to create the databases. Furthermore, these databases present just snap-
shots of the corresponding locations. Thus, feature point matching under changing condi-
tions due to illumination, season or construction work is very challenging if not impossible
at all. In order to avoid the tedious creation and maintenance of scene databases, [31] and
[27] use existing image collections such as GoogleStreetView. However, these collections
are rather sparsely sampled and not available for many regions and countries, which severely
limits their applicability to image-based localization for outdoor scenarios.

Another line of research avoids creating scene databases altogether by leveraging widely
available, untextured 2D cadastral maps annotated with per-building height information,
which we refer to as 2.5D maps or elevation models, generated for example from LIDAR
data. In particular, [18] establishes line correspondences between the input image and a
2.5D map of the scene. However, due to insufficient accuracy regarding the image orien-
tation, additional user interaction is required. Similarly, [21] searches for 3D-2D line and
point correspondences between an image and a 2.5D map. Therefore, an already registered,
second image is required as starting point for the method, which means that the first image
of a sequence has to be manually annotated.

Other works ease the problem by using panoramic images, since the additional infor-
mation contained in wide field of view images facilitates localization [1]. For instance, [8]
proposes a building façade orientation descriptor to register panoramic images with 2D maps.
However, since mobile devices typically have a rather narrow field of view, a descriptor such
as the one proposed by [8] is not discriminative enough in such situations. [5] first detects
vertical building outlines and façade normals in panoramic images, yielding 2D fragments,
and then matches the obtained fragments with a 2D map. [6] matches a descriptor computed
from vertical building outlines in perspective images with a 2D map. As a drawback, it
requires some manual input to make detection of vertical edges and vanishing points easier.

More recently, SLAM-based systems have been proposed for use in outdoor localization
tasks. For example, [29] and [19] globally align the local SLAM map from a stereo image
pair, which, however, requires the user to walk several meters in practice in order to span
the necessary baseline. In contrast, [2] leverages untextured 2.5D models and shows that it
is possible to instantly initialize and globally register a local SLAM map without having the
user perform any specific motions for initialization. However, the method relies on finding
the corners of buildings in the input image by extracting vertical line segments, which is a
rather vulnerable approach. In contrast, we build upon recent advances in semantic segmen-
tation in order to identify the buildings’ edges much more reliably.

In general, using segmentation in tracking is not a new idea (e.g., [10, 20]), however,
only specific objects are typically considered. In contrast, our method, which is trained on
independent data, can handle even unseen buildings. Moreover, we provide a very efficient
method to evaluate the cost function, allowing us to finely sample the pose space and avoid
local minima, which are another pitfall for 3D tracking. [26] exploits segmentation in order
to optimize the camera pose over a continuous 6D cost space. However, the method relies
on relatively detailed models and panoramas and considers only the façades as a segment
class, while we show that edges are important, especially when the field of view is narrow.
[3] also uses semantic labeling, but considers landscape images. Moreover, the method only
estimates the orientation of an image with respect to the model, but not its 3D position.
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Building upon the success of deep learning for classification, [13] trains a CNN to di-
rectly regress the 6 DoF camera pose from a single input image. In particular, transfer learn-
ing from large scale classification to the re-localization task is leveraged. However, for each
new scene, the network has to be re-trained, thus, severely limiting the practical applicability
of this approach.

3 Efficient 3D Tracking based on Semantic Segmentation
«««< HEAD In this section, we present our 3D tracking method based on semantic seg-
mentation. Since scalability and efficiency are crucial for mobile outdoor applications, our
system does not rely on cumbersome pre-registered image collections, but instead leverages
easily obtainable 2.5D city models and recent advances in semantic image segmentation. In
particular, given an input image, we first compute its semantic representation using a CNN
and a pose prior using a 3D tracker. Next, pose hypotheses are sampled around the prior,
and for each hypothesis, we compute a 3D rendering of the city model. The core idea now
is to find the pose that optimally aligns the rendering with the segmentation in order to cor-
rect inaccuracies caused by the tracker. Fig. 2 shows an overview of the approach. In the
following, we describe the individual steps in more detail.

======= Since scalability and efficiency are crucial for mobile outdoor applications,
our 3D tracking system does not rely on cumbersome, pre-registered image collections. In-
stead, we build on existing 3D tracking approaches and exploit easily obtainable 2.5D city
maps and recent advances in semantic segmentation in order to correct errors induced by the
tracker such as drift.

In particular, the input frame is first forwarded to the 3D tracker (see Sec. 3.1) and to
a CNN-based segmentation stage (see Sec. 3.2), giving us a rough estimate of the camera
pose and a semantic segmentation of the image. This information is then used in the pose
refinement stage (see Sec. 3.3), where we first sample pose hypotheses around the estimated
pose prior and then compute a 3D rendering of the city model for each hypothesis. The
core idea now is to find the pose hypothesis that optimally aligns the rendering with the
segmentation, finally yielding a more accurate estimate of the camera pose than the prior
provided by the tracker. Fig. 2 shows an overview of the approach. In the following, we
describe the individual steps in more detail.

»»»> ecc870c1336aa4441adc43fef63e1c59b08cfc07
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Figure 2: Correcting a 3D tracker by optimally aligning a 3D rendering of a city model
estimated from a 2.5D map with a semantic segmentation of the input image.
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3.1 3D Tracking

Due to the flexibility of our method, the actually used tracker is not crucial and we can
use any approach that performs relative 3D tracking between consecutive frames. This, in
addition, allows us also to apply different tracking methods for different application domains.
In this work, we use two different trackers with different properties, a SLAM-based approach
and a visual odometry algorithm. While the terms SLAM and visual odometry are sometimes
used synonymously in the literature, we consider the main difference in the reconstruction
of structure in the former, and the absence of explicit structure recovery in the latter.

The first tracker is a keyframe-based SLAM approach similar to PTAM [14]. Keyframe-
based SLAM approaches have been widely used in the past in the domain of handheld camera
motion. Although directly applicable on camera phones [15], as a drawback, they require
side-ways motion and usually fail for forward motion scenarios. After covering a reasonable
camera baseline between the initial keyframes, the camera pose is continuously estimated
and 3D structure is recovered using fast-corners and image descriptors.

The second tracker is a lightweight visual odometry algorithm based on the work of
[28]. The relative motion between consecutive keyframes is recovered by first estimating the
optical flow using Lucas-Kanade [17], followed by epipolar geometry estimation through
linearized Groebner solvers. These solvers have shown to give good performance in domains
with restricted camera motion, such as forward vehicular motion, however, at the cost of
being less accurate at turns due to the inherent numerical approximations.

After relative motion estimation, for both tracking approaches, the initial pose estimates
are forwarded to the pose refinement stage, which corrects the drift of the trackers based on
the 2.5D map and the semantic segmentation.

3.2 Semantic Segmentation

Recently, several deep learning based semantic segmentation methods [4, 16, 22] have been
proposed, allowing for classifying large number of classes. In our case, however, we aim
at segmenting only classes that are relevant to our problem, i.e., classes that correspond to
elements of the 2.5D map: the façades, their vertical and horizontal edges and background
(roofs, ground, sky or vegetation). In particular, we use a stage-wise training procedure,
where we start with a coarse network (we use FCN-32s [16]) initialized from VGG-16 [25],
fine-tune it on our data, and then use the thus generated model to initialize the weights of a
more fine-grained network (FCN-16s). This process is repeated in order to compute the final
segmentation network having an 8 pixels prediction stride (FCN-8s).

Once trained, the output of the segmentation stage for a given RGB image I is a set
of probability maps having the same resolution as I, one for each of our four classes, i.e.,
façade (f), vertical edge (ve), horizontal edge (he) and background (bg):

S(I) = {Pf,Pve,Phe,Pbg} . (1)

As shown in Fig. 3, other items are typically classified as the classes of the elements they
occlude. For example, pedestrians and cars will be ignored and classified as part of the façade
and as part of the background. This happens because they are also ignored in our training
images, and the segmentation method is powerful enough to classify them at run-time as
belonging to the class of the elements they occlude. This is the desired behavior, as scene
elements such as pedestrians or cars are not directly relevant in our approach.
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Figure 3: Input frames (top) and their semantic segmentations (bottom). The semantic seg-
mentation is robust to occlusions by cars, pedestrians and vegetation, as can be particularly
seen from the lower horizontal edges.

Standard training sets for semantic segmentation usually do not contain the edges of
façades, while these are crucial for our approach. Hence, in order to create ground truth
data with relatively little effort, we recorded short video sequences in an urban environment.
We manually aligned the first frame of each sequence with a 2.5D model and then applied
a model- and keypoint-based 3D tracking system. With this approach, we were able to
label the façades and their edges very efficiently. More precisely, we recorded 82 video
sequences of average length of about 10 seconds. In this way, we obtained a training set
of 10,846 images, which we augmented by horizontally mirroring each image, yielding a
training set of 21,692 samples in total.

3.3 Pose Refinement
The input to our pose refinement stage are a coarse pose prior, a segmentation of the in-
put frame and a 2.5D model. The core idea now is to sample pose hypotheses around the
prior and to find the pose which best aligns a rendering of the model with the semantic seg-
mentation. How well a rendering from pose p fits to the segmentation is evaluated via the
log-likelihood

L(p) = ∑
x

logPc(p,x)(x) (2)

estimated over all image locations x = (u,v). Here, c(p,x) is the class at location x when
rendering the model under pose p; Pc(x) is the probability for class c at location x given by
the corresponding probability map predicted by the semantic segmentation stage in Eq. (1).

We show now that under reasonable assumptions, the sum in Eq. (2) can be computed
very efficiently. We first observe that the angles between the camera and the gravity vector
are usually estimated very accurately by the sensors, in contrast to other measures that can
be very noisy. This allows us not only to reduce the pose search space, but also to rectify
the input image such that the columns of the image correspond to vertical lines in 3D [12].
Since the same also applies for the 3D renderings, we can compute the sum over the image
in Eq. (2) column by column. Let us thus rewrite L(p) as

L(p) = ∑u ∑v logPc(p,(u,v))(u,v)
= ∑u `(u,p) ,

(3)

where u and v denote the indices of the column and the row of an image location, respectively.
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To efficiently compute the sum `(u,p), analogously to integral images [7, 30], we apply
the concept of ‘integral columns’. Let us define such integral columns for the probability
map of class c as

IPc(u,v) =
v−1

∑
j=0

logPc(u, j) , (4)

which can be computed efficiently similarly to integral images:{
IPc(u,0) = 0
IPc(u,v) = IPc(u,v−1)+ logPc(u,v) .

(5)

Note that IPc only depends on the segmentation and needs only to be computed once and
independently of the number of evaluated pose samples. For instance, considering a typical
image column u, such as illustrated in Fig. 3 consisting of the labels background, horizontal
edge, façade, horizontal edge and background, `(u,p) can easily be computed by

`(u,p) = IPbg(u,vbh +1)− IPbg(u,0) +
IPhe(u,vh f +1)− IPhe(u,vbh) +
IPf(u,v f h +1)− IPf(u,vh f ) +
IPhe(u,vhb +1)− IPhe(u,v f h) +
IPbg(u,V )− IPbg(u,vhb) ,

(6)

where V is the number of rows of the segmentation, and the pose p is represented by the
transition rows v∗ between individual classes:

• vbh: the row of transition between the background (sky) and the top horizontal edge
• vh f : the row of transition between the top horizontal edge and the façade
• v f h: the row of transition between the façade and the bottom horizontal edge
• vhb: the row of transition between the bottom horizontal edge and the background

(ground plane)

Note that for some columns, not all v∗ are present, and that there can be another type of
transition including the vertical edge class. In these cases, the sum above has to be adapted,
which, however, is straightforward.

4 Experiments
In this section, we first illustrate the advantages of considering the edges of the buildings in
the context of our tracking problem. Then, we demonstrate our approach for two different
scenarios also building on two different tracking approaches. In this way, we cannot only
show the benefits of the proposed approach, but also its generality.

4.1 Importance of Edges
Vertical and horizontal edges are usually not considered in standard semantic segmentation
problems, however, they are very useful for our 3D tracking problem. As Fig. 4 shows, if the
buildings are in a configuration that forms a discriminative shape in the image, segmenting
only the façades can be sufficient. Even with these discriminative configurations, though,
tracking can still fail. On the other hand, if the buildings are aligned in a row for example,
the registration is not constrained enough without the edges, and tracking is not possible.
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(a) (b) (c) (d)
Figure 4: Façade only segmentations (a, c) and registration with our method overlaid over
the input frame (b, d). The pair (a, b) shows a configuration where segmenting the façades
alone is sufficient for successful tracking, while for the pair (c, d), additional constraints
from the edges would be required.

4.2 Motion Estimation Using SLAM for Handheld Cameras
First, we demonstrate our method on several challenging sequences from a handheld camera
using SLAM. These sequences were not used for training the semantic segmentation, and,
furthermore, have also been captured during a different season than the training sequences.
For each frame, we use 245 pose samples around the prior provided by the SLAM tracker,
taken within a square of±3m on the ground plane, and in a range of [−6°;+6°] for the orien-
tation around the model’s up-vector. Since the movement along the z-axis and the orientation
around the other two rotation axes seem less affected by tracking errors and drift, we do not
generate samples for these parameters. We compared our method against the unmodified
camera trajectory of the SLAM system described in Sec. 3.1. As Fig. 5 shows, the SLAM-
based tracking system is prone to drift, while we can register the sequences successfully,
thanks to the “anchors” provided by the semantic segmentation.

In contrast to previous methods, we do not rely on pre-registered images. This makes
our method not only more convenient, but also more robust: We are much less affected by
illumination variations, occlusions or other changes in the scene. In particular, Sequence #5
was recorded from the same scene under different illumination conditions, once on a cloudy
day, and once with bright sunlight casting shadows on the façades. Since the segmentation
is robust enough to cope with such variations, our method is not affected and still able to
successfully track the sequences. Table 1 shows some quantitative results in terms of rotation
error around the model’s up-vector and position error on the ground plane.

Sequence #1 Sequence #3 Sequence #5
Frame 250 350 450 550 650 200 400 600 800 1000 210 310 410 510 610

Seg rot. error [°] 0.9 0.6 4.3 1.4 0.6 0.9 1.4 1.6 0.6 1.3 0.3 3.7 2.0 2.9 3.1
SLAM rot. error [°] 3.9 3.6 4.3 4.4 5.4 2.1 4.6 4.4 3.6 1.7 3.3 6.7 8.0 8.9 9.1
Seg pos. error [m] 1.0 0.8 2.4 1.2 1.5 1.0 1.0 2.2 1.4 1.3 0.2 2.7 1.9 3.4 2.3

SLAM pos. error [m] 1.4 1.5 1.3 1.2 1.3 0.5 2.6 1.1 1.5 2.2 2.3 1.3 1.9 0.9 2.2
Table 1: Rotation and position errors for our method (Seg) and SLAM-based track-
ing (SLAM) on three sequences.

4.3 Vehicle Trajectory Estimation Using Visual Odometry
To show the generality of our approach, we run a second experiment, where we combine our
pose estimation method with the visual odometry tracker described in Sec. 3.1 for a camera
rig mounted on the roof of a car. The poses are sampled along the trajectory estimated by



HIRZER, ARTH, ROTH, LEPETIT: 3D TRACKING WITH SEMANTIC SEGMENTATION 9

Sequence #1, frames #43, #103, #163, #203, #343 and #723.

Sequence #3, frames #223, #483, #663, #823, #923 and #1123.

Sequence #5, frames #43, #83, #183, #243, #363 and #623.

Figure 5: 3D tracking on challenging sequences. Semantic segmentation of the input frame
(top row), registration with a SLAM-based tracker overlaid over the input frame (middle
row), and registration with our method overlaid over the input frame (bottom row).

the tracker using the same settings as described above, and corrected from the best sampling
result.

The results are depicted in Fig. 6, where we show the trajectory obtained by our approach
(solid red line) along with the trajectory of the visual odometry tracker (dotted blue line) on
a part of Sequence #18 from the KITTI dataset [11]2. While the trajectory of the visual
odometry tracker deviates from the real motion path over time, our method removes most of
the errors and aligns the trajectory very well.

We want to note explicitly that the segmentation was not tuned to this vehicular motion
domain and that the combination of 2.5D model data from OpenStreetMap and the images
from KITTI is very challenging for several reasons. First, the images are highly over- or

2Although the KITTI sequences were recorded with a stereo rig, we used the images from the left camera only.
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underexposed, especially at the image areas of the façades. Second, the model is highly
inaccurate at corners and in narrow streets, which becomes clearly observable during ren-
dering. Third, the height of the buildings is unknown, so is the actual building altitude. In
particular, following the data source, all buildings are located on a single ground plane, forc-
ing the tracker to stay on the ground plane even if the real motion trajectory is slightly uphill
or downhill (i.e., ±2m on the trajectory shown in Fig. 6).

Figure 6: Trajectory estimated via visual odometry (dotted blue line) and the corrected
trajectory using our segmentation-based tracking (solid red line) (left). Illustrative examples
from KITTI Sequence #18 showing highly over- or underexposed façade areas (right).

5 Conclusion

In this paper, we presented a 3D tracking method which additionally takes into account
environmental information in terms of 2.5D maps. The key idea is to estimate a coarse pose
using the tracker and to refine this pose later on using the environmental information. For that
purpose, a 3D model is rendered from the 2.5D maps, which is then optimally aligned using
a semantic segmentation of the corresponding input image. In this way, we get a robust and
accurate estimation for the pose and do not need pre-registered reference images, which are
cumbersome to obtain. We demonstrated that our approach is very general, as we applied
it for two different scenarios also using two different tracking approaches. In particular,
introducing additional semantic classes (i.e., vertical and horizontal edges) has proven to be
very beneficial, where the currently fast progress in semantic segmentation would allow for
further improvements in the future.
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