
[POSTER] Tracking and Mapping with a Swarm of Heterogeneous Clients
Philipp Fleck∗

Graz University of Technology
Clemens Arth†

Graz University of Technology
Christian Pirchheim‡

Graz University of Technology
Dieter Schmalstieg§

Graz University of Technology

Figure 1: Collaborative Tracking and Mapping. Top: Keyframes of individual SLAM clients observing the same scene simultaneously. Middle:
Sparse point map created by the server using the keyframes from four clients. Bottom: Densified server point cloud reconstruction of the scene.

ABSTRACT

In this work, we propose a multi-user system for tracking and map-
ping, which accommodates mobile clients with different capabili-
ties, mediated by a server capable of providing real-time structure
from motion. Clients share their observations of the scene accord-
ing to their individual capabilities. This can involve only keyframe
tracking, but also mapping and map densification, if more compu-
tational resources are available. Our contribution is a system archi-
tecture that lets heterogeneous clients contribute to a collaborative
mapping effort, without prescribing fixed capabilities for the client
devices. We investigate the implications that the clients’ capabili-
ties have on the collaborative reconstruction effort and its use for
AR applications.

∗e-mail: philipp.fleck@icg.tugraz.at
†e-mail:arth@icg.tugraz.at
‡e-mail:pirchheim@icg.tugraz.at
§e-mail:schmalstieg@tugraz.at

Index Terms: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Artificial, augmented and vir-
tual realities; I.4.8 [Image Processing and Computer Vision]: Scene
Analysis—Tracking; J.7 [Computer Applications]: Computers in
Other Systems—Real time

1 INTRODUCTION

When every person in the room has a mobile phone in their pocket,
the opportunity of turning these devices into a “swarm” of smart
cameras presents itself. Together, multiple mobile devices can
work more efficiently on simultaneous localization and mapping
(SLAM) than any single mobile device alone could. With track-
ing and mapping in a single workspace, collaborative applications
for augmented reality (AR) are enabled, such as interior design or
games involving physical objects.

However, a swarm of unmodified mobile devices lacks many
properties that traditional multi-camera systems employed in
robotics have: The devices do not have a fixed geometric arrange-
ment. Their capabilities in terms of image quality and computa-
tional performance may differ dramatically, and even their avail-
ability may change, as users leave the room or run out of battery
power.

2015 IEEE International Symposium on Mixed and Augmented Reality

978-1-4673-7660-0/15 $31.00 © 2015 IEEE

DOI 10.1109/ISMAR.2015.40

136

Figure 2: Client-server system architecture. The nodes C1 . . .Cn rep-
resent SLAM clients, submitting information (e.g. keyframes) to the
SfM server. For each client, the server creates a client manage-
ment module, where a new map is reconstructed and stored in the
map pool. The server continuously updates the client maps and at-
tempts to merge multiple maps. It pushes relevant information (e.g.
keyframes with camera poses) into the client pull queues, from where
they can be pulled by clients to update their own local map.

With wireless networking, the required computational perfor-
mance and persistent storage can be provided via cloud computing.
Conceptually, clients operate as a swarm, but, physically, the clients
only connect to the cloud server. The cloud server treats keyframes
obtained from the clients as an image database and computes struc-
ture from motion (SfM) on the database.

Unfortunately, such an attempt at using distributed computation
to better amortize the computational demands of multi-user SLAM
cannot operate in a tight loop between client and server. A client
relying on low-latency response from the server, for example, for
interest point triangulation, will fail if server or network connection
are slowed down. Such a case is very likely in real-world cloud
computing. Yet, it has been mostly ignored by previous multi-
camera SLAM systems. In this work, we demonstrate two advances
over such previous work.

First, we demonstrate that with a careful subdivision of labor,
independent and heterogeneous clients are possible. We only al-
low clients that can operate independently, without the help of a
server, for some time, to be swarm members. Members provide ob-
servations to the server, and, in return, receive updates on the other
member of the swarm and on the mapped environment. This inde-
pendence is achieved by executing an independent SLAM instance
on every client. Beyond the basic SLAM capability, more capable
clients can add additional features, such as map densification or AR
applications.

Second, we demonstrated that maps that start out independently
can actually be merged later, eventually leading to globally refer-
enced maps. The server attempts to merge client maps whenever
possible and thus can provide a common reference coordinate sys-
tem that allows for exchanging spatially registered information be-
tween clients. This behavior has been speculatively mentioned as a
possibility by some authors [10, 5], but never implemented in any
published system.

We show that this approach is a robust framework that allows for
collaboratively mapping and tracking a three-dimensional scene in
real-time between a server and multiple mobile clients. We demon-
strate the plausibility of our approach with a collaborative AR ap-
plication prototype that shares augmentations across clients.

2 RELATED WORK

For brevity, we only review work directly related to SLAM, putting
special focus on approaches considering multiple users. The inter-
ested reader is referred to the relevant literature for an introduction
to SfM [4].

Davison et al. [2] first introduced real-time monocular SLAM
with a sparse feature map. Later, Klein and Drummond [7] pro-
posed parallel tracking and mapping (PTAM), with the mapping
part operating asynchronously on selected keyframes rather than in

Figure 3: Server-client communication. Left: Client 1 commits its
calibration, keyframes and poses, and triggers the server to start the
reconstruction, while trying to pull new data. Right: Client 2 per-
forms the same initial steps as client 1. The server starts searching
for correspondences between client 1 and 2. It is able to merge the
3D structures and fills the client’s queues. Pull request are now an-
swered with keyframes and poses from the common map.

lock-step with the tracking. Those two approaches still serve as
the foundations for improving, extending and studying multi-user
SLAM.

Castle et al. [1] proposed an extension to PTAM handling multi-
ple maps. The main motivation was better recovery from tracking
failures, rather than multi-user mapping. Riazuelo et al. [9] pro-
posed a cloud-based framework as an evolution of PTAMM. Their
C2TAM system introduces a server-client architecture, placing the
mapping task entirely on the server, and leaving clients to perform
only tracking. Apart from the high network bandwidth require-
ments of this approach, clients cannot operate without the help of
the server and are, thus, not suitable for operation in arbitrary wire-
less networks.

CoSLAM [12] uses multiple cameras to collaboratively create a
map and to handle dynamic objects. The system was demonstrated
with multiple clients and a central server. However, it purely fo-
cused on reconstruction from multiple cameras and did not deal
with communication issues at all.

Ventura et al. [11] combined a server-side localization system
with a local SLAM client operating on a mobile device. Clients
commit keyframes to a server which performs localization based
on a pre-made and geo-registered model of the environment. The
server is only responsible for localization, and its map remains
static throughout the system operation. Multiple clients were not
considered.

In contrast to previous work, our system only shares keyframes
and scene structure, neglecting the underlying feature representa-
tion. This introduces some level of redundant computation, but
allows us to integrate SfM and SLAM components into a single
system. Since every node – both clients and server – can execute
independently, we achieve a new level of sustainability of opera-
tion.

3 METHOD

Our system consist of a server running an SfM pipeline and multiple
clients running SLAM. The reconstructions created by clients and
server (i) use different feature descriptions, (ii) reside in different
coordinate systems, and (iii) are created asynchronously, using per-
node strategies involving global or local optimization.

Clients and server communicate over the network using a pro-
tocol focusing on keyframes and camera poses. Fig. 3 shows an
example. After connecting to the server, a client first registers its
ID and provides its internal camera calibration. The server initial-
izes a per-client message queue. After initializing its local SLAM
map, the client submits the corresponding stereo keyframe pair to
the server, which reconstructs a per-client map independently of the
client’s own map (Section 3.1).

137

Figure 4: Densified individual 3D reconstructions of four clients, see also Figure 1.

During operation, the client asynchronously pulls messages from
its queue (e.g. during idle times of background mapping thread).
Upon certain events, the server puts relevant information into the
client’s queue. For example, if a second client transmits a keyframe
that allows the merging of two clients’ maps, the server offers addi-
tional keyframes and corresponding poses. The client may incorpo-
rate these keyframes into its local map (Section 3.2). Additionally,
the server may provide anchor points that allow for synchronizing
the reference coordinate systems between multiple client instances
(Section 3.3).

3.1 Server
The server is based on the SfM pipeline described by Hoppe et
al. [6]. It uses SIFT features [8] calculated on the GPU1. Every
client is assigned a separate instance of the reconstruction pipeline
at the server. Upon commitment of keyframes, the server creates
a sparse 3D reconstruction of the scene for each client and inves-
tigates a potential image overlap between the views of clients by
feature matching and epipolar geometry estimation. Based on this
overlap detection, either a new map is introduced (added to the
map pool) or an existing one is enlarged through merging. Maps
in the pool keep pace with the client reconstructions and are re-
freshed through the insertion of new keyframes, as client recon-
structions grow. Managing stored maps includes inserting yet un-
seen keyframes from other clients and the corresponding pose in-
formation into client queues (Fig. 2).

The map merging process is based on the feature point corre-
spondences established during overlap detection. We first use the
P3P algorithm [3] on a keyframe of client A with a pose PA and the
map of client B, thereby recovering the pose PB

A of the keyframe of
client A in the coordinate system of client B. A single 3D point X
triangulated in both maps of clients A and B suffices to estimate the
remaining scale factor s through Eqn. 12,

s =
||XA − cA||
||XB − cB|| (1)

where c denotes the corresponding camera centers. However, we
must ensure robustness, while the maps are enlarged over time. The
robustness is achieved by continuously re-estimate the scale factor
as the median over the distance ratios between the camera centers
and all 3D points commonly triangulated.

The 3D structure from client A is transformed into the coordinate
system of client B through Eqn. 2,

XB = (PB
A)

−1 ·
(

X′
A · s
1

)
with X′

A = PA ·
(

XA

1

)
(2)

and the poses of the keyframes i= 1 . . .n of client A are transformed
according to Eqn. 3,

PB
(i)A = P(i)A ∗

[
(PA)

−1

0T 1

]
∗
[

PB
A

0T s

]
(3)

1http://cs.unc.edu/˜ccwu/siftgpu/
2Poses P are 3×4 matrices, and 3D points X are 3×1 vectors.

Once a client adds a new keyframe to its local map, the cor-
responding server-side reconstruction is enlarged, running bundle
adjustment on the newer subset of keyframes and points and fix-
ing previous ones to maintain real-time performance, as maps grow
large. Subsequently, the server provides the keyframe to all other
clients observing the same scene. Each keyframe is warped to
fit the client’s camera calibration before being placed in the out-
bound queue. The server also provides the corresponding pose,
transformed in the respective individual client’s coordinate system,
thereby avoiding additional computational effort on the client side.
Finally, the server also offers 3D points and their corresponding
observations, if they have been proven stable by bundle adjustment.

3.2 Clients
Various client types can become part of the swarm. The underly-
ing SLAM system uses corners tracked across frames to create 3D
map points, which differ from those built by the server. A client
decides independently on the type and amount of data it wants to
read from the queue provided by the server, for instance, when it
has spare computational resources. We experimented with three
different client configurations:

V1 The client is only reading keyframes and adding it to the map
through P3P. The required feature correspondences are established
through exhaustive matching of patches around corners in the new
keyframe and the existing keyframes. This approach is simple, but
expensive, and can occasionally lead to wrong pose estimates.

V2 The client is reading keyframes with poses from the server.
These keyframes can be directly added to the local map, by extract-
ing observations from existing 3D points through back-projection.
This approach is very fast, but does not create any new 3D points
based on features from server keyframes.

V3 The client improves upon V2 by creating additional 3D
points from the new keyframes. The search for matching features is
guided by poses provided by the server. The additional map densi-
fication requires more computational resources than V2, however,
it enables the client to grow it maps into yet unseen areas through
keyframes from other clients.

3.3 Client-server synchronization
Our system enforces eventual consistency between the server and
its clients over time. We synchronize corresponding client and
server maps by applying the anchor point method of Ventura et
al. [11]. For each remote client map, the server determines a set of
well-converged 3D map points that can be used to align the corre-
sponding local client map. These anchor points can be integrated
into the local client maps as fixed points and provide strong con-
straints in the clients’ bundle adjustment optimization. In particu-
lar, a consistent reference coordinate system is established, which is
essential for collaborative AR applications, where multiple clients
render virtual objects in a consistent way.

4 EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we present results obtained with the prototype im-
plementation of our system on table-sized indoor scenes. Our server
runs on a notebook computer and is connected with mobile device

138

Figure 5: Left to right: Client mode V1 (keyframes only), V2
(keyframes and server poses) and V3 (keyframes, server poses and
3D point triangulation). Blue: local poses. Red: received server
poses. Green: local 3D points. Magenta: added 3D points. V1
only added some of the received poses, because the RANSAC
parametrization is set to avoid false positives. V2 added all re-
ceived keyframes and poses, and V3 additionally triangulated new
3D points.

clients (Google Nexus 5, Samsung Tablet, Microsoft Surface Pro)
via WiFi.

Figure 3 outlines the communication between the server and two
clients for the reconstruction of the scene depicted in Figure 1. Net-
work communication operates asynchronously through per-client
queues, but we are not yet fully exploiting all system features. We
plan to replace the individual queues with a publish-subscribe pat-
tern that reduces network traffic

Figure 1 shows keyframes received from clients and the success-
fully merged map from four clients. Figure 4 shows the individ-
ual remote client maps reconstructed by the server. On rare oc-
casions, merging problems are caused by the fact that the server
employs SIFT features for matching. SIFT is not sufficiently in-
variant against strong tilt changes, e.g. when two clients observe a
table from opposite sides. We also experienced occasional conges-
tion of the client after a map merges triggered a large map update,
consisting of potentially many new keyframes. This problem can
be overcome by restricting the maximum rate at which a client pro-
cesses map updates.

The map information provided by the server can be employed by
the clients to extend and refine their local maps. We suggested three
types of clients (Fig. 5). In the following, we are discussing the ad-
vantages and disadvantages of the three client types. Our baseline
V1 is obviously outperformed by the other types. The strength of
V2 is that it improves the tracking performance with low computa-
tional effort. However, no local map extension is done. V3 repre-
sents a trade-off between tracking performance and map enhance-
ments. We found that a good compromise is to actively switch be-
tween modes V2 and V3, enabling the client to improve the track-
ing performance with low computational overhead and to enlarge
its map whenever computationally possible.

In addition to reconstructing and maintaining a shared map pool,
our server allows to register annotations, and, thus, enables sim-
ple collaborative AR applications. In our application prototype, we
let mobile clients engage in a card game. Figure 6 depicts the live
AR view of two clients, including shared annotations, i.e. the ar-
rows pointing to one of the cards. Created by either of the clients,
an annotation is first registered in the local client map coordinate
system. After merging two clients maps, the server automatically
transforms all registered annotations into the common reference co-
ordinate system and pushes them to the corresponding clients. Due
to the server-side calculation, no computational overhead is gener-
ated on the client-side.

5 CONCLUSION

We presented a heterogeneous system for tracking and mapping,
consisting of a server and a swarm of mobile clients. The swarm

Figure 6: Collaborative AR application with two clients C1, C2. Top:
C1 annotates the yellow-blue card and commits the annotation to the
server. Bottom: As soon as C2 pulls from the server, the arrow
annotation is also visualized.

members are largely independent, but complementary. Our proto-
type enables collaborative AR applications suited for mobile de-
vices covering a wide range of performance characteristics.

ACKNOWLEDGEMENTS

This work was partially funded by the Christian Doppler Labora-
tory on Handheld Augmented Reality.

REFERENCES

[1] R. O. Castle, G. Klein, and D. W. Murray. Video-rate Localization

in Multiple Maps for Wearable Augmented Reality. In ISWC, pages

15–22, 2008.

[2] A. J. Davison. Real-Time Simultaneous Localisation and Mapping

with a Single Camera. In ICCV, pages 1403–1410, 2003.

[3] M. A. Fischler and R. C. Bolles. Random sample consensus: A

paradigm for model fitting with applications to image analysis and

automated cartography. Commun. ACM, 24(6):381–395, June 1981.

[4] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision. Cambridge University Press, second edition, 2004.

[5] A. Hook, P. Fite-Georgel, M. Meisnieks, A. Maes, M. Gardeya, and

L. Naimark. Generation and sharing coordinate system between users

on mobile, 2014. US Patent: 20140267234 A1.

[6] C. Hoppe, M. Klopschitz, M. Rumpler, A. Wendel, S. Kluckner,

H. Bischof, and G. Reitmayr. Online feedback for structure-from-

motion image acquisition. In BMVC, pages 70.1–70.12, 2012.

[7] G. Klein and D. Murray. Parallel Tracking and Mapping for Small AR

Workspaces. In ISMAR, Nara, Japan, November 2007.

[8] D. G. Lowe. Distinctive image features from scale-invariant key-

points. IJCV, 60(2):91–110, Nov. 2004.

[9] L. Riazuelo, J. Civera, and J. Montiel. C2TAM: A Cloud framework

for cooperative tracking and mapping. In Robotics and Autonomous
Systems, Volume 62, Issue 4, Pages 401-413, April 2014, 2014.

[10] C. Sweeney. Improved Outdoor Augmented Reality through Global-

ization. In Doctoral Consortium, ISMAR, 2013.

[11] J. Ventura, C. Arth, G. Reitmayr, and D. Schmalstieg. Global Lo-

calization from Monocular SLAM on a Mobile Phone. TVCG,

20(4):531–539, 2014.

[12] D. Zou and P. Tan. CoSLAM: Collaborative Visual SLAM in Dynamic

Environments. PAMI, 35(2):354–366, 2013.

139

