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Figure 1: Results from our SLAM-based localization system after optimization. Left: an overlay of the 2.5D building model from
OpenStreetMap. Right: ISMAR logos superimposed onto the façades using the surfaces from the 2.5D maps.

ABSTRACT

In this paper, we address the topic of outdoor localization and track-
ing using monocular camera setups with poor GPS priors. We lever-
age 2.5D building maps, which are freely available from open-source
databases such as OpenStreetMap.

The main contributions of our work are a fast initialization method
and a non-linear optimization scheme. The initialization upgrades a
visual SLAM reconstruction with an absolute scale. The non-linear
optimization uses the 2.5D building model footprint, which further
improves the tracking accuracy and the scale estimation. A pose
optimization step relates the vision-based camera pose estimation
from SLAM to the position information received through GPS, in
order to fix the common problem of drift.

We evaluate our approach on a set of challenging scenarios. The
experimental results show that our approach achieves improved
accuracy and robustness with an advantage in run-time over previous
setups.

Index Terms: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically-based Modeling; I.3.6
[Computer Graphics]: Methodology and Techniques—Interaction
Techniques; I.3.7 [Computer Graphics]: Three-Dimensional Graph-
ics and Realism—Virtual Reality; H.5.2 [Information Interfaces and
Presentation]: User Interfaces—Direct Manipulation methods

1 INTRODUCTION

Augmented Reality (AR) is commonly expected to change the way
we perceive our environment and interact with digital information in
the near future. Enriching our surroundings with virtual information
has a large potential for entertainment purposes like gaming1, but
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1Pokemon GO. https://www.pokemongo.com

also for serious applications in infrastructure maintenance [34] or
rescue operations [15], for example.

As the primary requirements for AR include real-time behaviour,
the fusion of virtual and real and accurate registration [5], there are
a lot of problems to solve. Mobile devices have reached certain
maturity to enable real-time processing of sensor data. Similarly,
mobile Graphics Processing Units (GPUs) are capable of creating
impressive visualization of content. However, the problem of ac-
curate registration is yet a field of active research targeted by a
large number of research groups and big commercial companies like
Facebook, Microsoft and Google.

A very promising starting point for accurate registration is Si-
multaneous Localization And Mapping (SLAM)2. SLAM has been
extensively used in AR systems driven mainly by the work of [20]
for creating a model of the local environment and tracking the cam-
era relative to this map. Purely monocular SLAM systems adopt
two-frame or multi-frame approaches, scaling in terms of complex-
ity with the available computational resources. Common to these
approaches is the requirement to translate the camera over a certain
distance during initialization. This requirement stems from the need
to establish stable triangle equations, which can be solved within
a robust scheme [12]. Some other systems use RGBD-sensors to
include a sense of depth for building the local model, which alleviate
the necessity for translation at initialization. However, due to the
restrictions of the depth sensing technology involved, this comes
at the cost of being applicable only within small to medium sized
environments indoors.

Given the requirement of translation in the former and the re-
striction to small environments in the latter group of approaches,
applying SLAM in outdoor scenarios robustly is a complicated
task. While covering a certain translational motion with a handheld
camera is perfectly feasible indoors, having to walk several meters
outdoors is cumbersome. Besides other issues owing to camera
acquisition outdoors like motion blur, SLAM is inherently built
to establish a local coordinate frame without any relations to the
global surrounding. Therefore the model created misses the appro-

2While SLAM approaches differ by the nature of sensor data used, for the
rest of the paper, we use SLAM as a synonym for visual SLAM, i.e. SLAM
using camera images.
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priate scale factor relating it to globally registered data, ie. any
geo-referenced data.

In this work, we propose an approach for outdoor SLAM-based
localization leveraging commonly available 2.5D building footprints
and poor Global Positioning System (GPS) sensor data. The main
contributions of this work is (i) a hybrid graph-based optimization
approach to fuse SLAM and data from the 2.5D model with low
computational effort, in order to improve the accuracy of both the
reconstruction and the camera trajectory, as well as to reduce drift.
As a side contribution (ii) we employ a new fast initialization routine
for SLAM from a single image and the 2.5D map, applying synthetic
depth images in new ways.3 The experimental results (see Fig. 1 for
an example) proof the plausibility of our approach.

2 RELATED WORK

An exhaustive overview of SLAM and localization literature is be-
yond the scope of this paper. It is worth noting that the terms
registration and localization in a global context are often used inter-
changably in the literature. However, approaches differ widely from
determining only a 2D position with several meters of inaccuracy,
up to resolving a full 6DOF pose with centimeter-accurate position
and sub-degree accurate rotation estimation.

As our approach definitely falls into the latter category, in the
following we focus only on the most prominent approaches from
SLAM and on those most related to our concept. Similarly, we give
an overview of recent vision-based outdoor localization methods
and hybrid approaches proposed in the AR community.

Database and Reconstruction-based Approaches A large
number of approaches from this category perform varying degrees
of global registration using a query image and retrieving a related
image from an offline image database. The most prominent approach
in this respect was published by [35], and more recently by [6, 13]
and others. Some proposed methods leverage point clouds [17, 26]
or sub-parts of point clouds [2, 4] together with source images from
different domains. Common to these approaches is the lack of gen-
eral scalability and the absence of appropriate update mechanisms
to cope with changes of the environment over time.

SLAM Systems using Vision and Depth Sensors A large
number of Visual Odometry (VO) and approaches for monocu-
lar SLAM, multi-camera systems and systems featuring additional
depth sensors were proposed in the past.

The earliest popular vision-only approach within AR was PTAM
proposed by [20, 21]. More recently, ORBSLAM2 [27, 28] has be-
come the basis for a lot of follow-up approaches. There are basically
two ways to initialize a monocular SLAM system. The first is to use
eight-point algorithm [14] to calculate the homography matrix for
planar scenes and using the five-point algorithm [31] to calculate the
fundamental matrix for non-planar scenes. However, the recovered
relative camera pose is ambiguous. In addition, initializing a system
is difficult for an untrained user.

The second category leverages visual information such as point,
line, plane and or even rich features within Convolutional Neural
Networks (CNNs). [16] use traditional vanishing point methods to
estimate the structure of a scene. More recently, depth estimation
based on deep learning [7, 23, 39] were proposed. These methods
learn the feature of depth images through a large number of datasets
and finally get the best model to estimate depth values for new input
samples.

Although methods based on vision only form the most popular
group by far, RGBD cameras have also been proposed to perform
close range depth estimation within SLAM. [30] proposed KinectFu-
sion to densely reconstruct areas. [19] proposed InfiniTAM, which is
also applicable on suitable mobile devices. Both methods are usable

3https://github.com/lauchlry/Buiding-GPS-SLAM
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Figure 2: Description of the three coordinate system in our approach.
The UTM coordinate system is the global coordinate system and the
domain of the sensor data. The 2.5D map coordinate system is the
local frame within visible range with a fixed origin within the global
coordinate system. The SLAM system is the local coordinate system
of the map, respectively the camera.

in indoor AR scenarios only, due to the restrictions placed by the
depth sensing hardware involved.

Resolving Scale Ambiguities Resolving scale ambiguity has
been a dominant topic not only in the multi-view geometry and
reconstruction domain mainly, but also in SLAM. [9] propose to add
spatially x calibration objects of known size into the scene for deter-
mining absolute scale of the camera motion and the scene structure
in monocular SLAM systems. [8] for example use a 3D measurement
model linked to the camera frame to initialize a monocular SLAM
system. [22] estimate the absolute scale of a handheld monocular
SLAM system by tracking a user’s face.

[38] use multiple cues such as geo-tags, vanishing points and
geo-referenced 3D models for global structure-from-motion (SfM)
registration. [25] and others fuse visual sensors with an Inertial Mea-
surement Unit (IMU) to obtain metric scale for such reconstructions.

Hybrid Systems for Outdoor Localization and Tracking Sev-
eral hybrid solutions to outdoor localization and tracking stem from
the AR community. [29, 32, 37] are sophisticated and popular meth-
ods about fusing IMU and vision in recent years. [18] and [33]
present tracking systems fusing image and sensor information for
more accurate outdoor localization with high-quality sensing hard-
ware. [25] and [10] propose visual-inertial SLAM for more precise
camera pose estimation, using noisy sensor measurements only.

[36] use video streams and IMU data to perform camera reg-
istration. [24] improve the localization accuracy by fusion the
SLAM/differential GPS with 3D building models. [1] train a CNN
for geo-localization, given a semantic segmentation of the input
image and 2.5D models.

Differentiation from Previous Work Based on ORBSLAM2
[27, 28], closest to our work is the approach of [3] in terms of the
use of 2.5D models. However, our system is not based on semantic
segmentation and, instead, tightly integrates building model errors
into an optimization scheme to closely align the reconstruction
to the given 2.5D map. As opposed to a similar idea from [26]
and [24], we integrate this error in a novel graph-based optimization
scheme in 2D directly in the SLAM system. We are thereby able to
bring ORBSLAM2 into the outdoor domain, which has rarely been
thoroughly exploited yet.

3 COORDINATE SYSTEM AND INITIALIZATION

The outdoor localization problem as defined in our case involves
three different coordinate systems: (i) the global coordinate system,
for which different geodetic formats are available; (ii) the 2.5D map
coordinate system, which is a local coordinate system with metric
scale; (iii) the SLAM coordinate system, i.e., the local coordinate
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Figure 3: The drift problem of GPS sensors. Top: Three images
from dataset 07-08. Bottom: Corresponding depth images calculated
from the raw sensor pose. While the first and the last frame have
reasonable pose estimates, the pose of the middle frame suffers from
a completely wrong estimate due to temporal GPS drift.

system of the reconstructed map without global scale, in which the
camera is moving. As the most common longitude-latitude based
WGS84 system is not metric, we use Universal Transverse Mercator
(UTM) in our setup for the global coordinate system. An illustration
of these coordinate systems is given in Fig. 3.

The global coordinate system in UTM is a right-handed coordi-
nate system whose y−axis is pointing to north, the x−axis pointing
to the east and the z− axis pointing to the sky respectively. The
2.5D map coordinate system is essentially a cut-out of the actual
environment with its coordinate center having a fixed position within
the global coordinate system. It is important to note that this coor-
dinate system is introduced mainly to bring all the geo-referenced
information into a coordinate system fitting the visual range. This is
required to avoid numerical instabilities in the mathematical systems
involved4. The sensor data samples available from common mobile
devices consist of a timestamp, a 3-DOF position information GPS
in WGS84 format, and a 3-DOF rotation information expressed in
quaternions from the compass and the Inertial Measurement Unit
(IMU). Thus, we can describe the sensor-based camera pose in
the 2.5D map as a 4×4 matrix Tsensor(i) consisting of a rotational
Rsensor(i) and translational tsensor(i) component where i denotes the
ith sensor sample:

Tsensor(i) =
[

Rsensor(i) tsensor(i)
0 1

]
. (1)

Given the pose from sensors, we are able to generate a pseudo-
depth image using the 2.5D map at hand, which essentially gives us
an approximate distance value for each pixel in our camera frame.
A naive way to create such a depth image is to calculate the distance
D from each point P2.5D on the building surface to the camera center
Ocam = (Xcam,Ycam,Zcam):

D=
√

(X2.5D−XOcam)
2 +(Y2.5D−YOcam)

2 +(Z2.5D−ZOcam)
2 (2)

The depth information required is essentially encoded in the depth
channel of a GPU rendering of the building models from the actual
pose estimate. Therefore we render the 2.5D map from the current
position and automatically retrieve the distance value for each pixel
in our image as

D′ =
2.0+Dmin +Dmax

Dmax +Dmin− (2.0∗D−1.0)
∗ (Dmax−Dmin) . (3)

Dmax and Dmin are chosen as the view frustum cut-off distances.
Examples of such initial depth images are shown in Fig. 3.

4Although systems like UTM are inherently local systems with respect to
the globe, they span several hundreds of kilometers in each direction.

Give the depth channel information, we then retrieve an image
mask. Then, we extract ORB key points on the image area covered
by the mask and estimate the corresponding distance information
for each feature point,i.e., potential SLAM map point using Eqn. 3.
Finally, the feature point coordinate p(x,y) in the images and the dis-
tance information are used to create a 3D map coordinate P(X ,Y,Z),
which make up the initial SLAM map with the correct metric scale
for subsequent SLAM tracking.

4 OPTIMIZATION

The individual components used in our system provide complemen-
tary cues for accurate localization and tracking. On the one hand,
GPS information and the 2.5D map provide a global metrics scale
for large-scale outdoor environments. 2.5D maps are easy to obtain
from public sources nowadays. From a practical point of view, sen-
sors are small, cheap and low-power, but suffer from inaccuracies.
On the other hand, SLAM contributes accurate local registration
and tracking, but is hardly applicable in outdoor environments di-
rectly. Therefore it is required to fuse all information in a common
optimization scheme described in the following.

Due to the liveliness of our system and the varying suitability
of information during different states of the system, we establish a
segmentation optimization mechanism. According to the active state
of the system at a particular time instance, we enable certain groups
of parameters within the optimization and leave out others.

At the initialization phase, an initial map based on our distance
estimation approach is created. Since the initial map is based on
singular feature observations, we are only able to optimize the cam-
era pose, i.e., track the camera relative to a growing, but static map.
After individual map points are tracked successfully, i.e., multiple
observations have been collected from different camera positions,
the optimization of map point positions can be safely enabled. This
essentially upgrades the SLAM system to its usual common func-
tional state, where we use the regular reprojection error for optimiza-
tion. Lastly, as the SLAM system is set up, we add the building
model-based error and include the actual sensor information into the
optimization.

4.1 Building Model-based Optimization

The major aim of building model-based optimization is to align the
camera trajectory and the associated SLAM map closer to the 2.5D
map, in terms of the full 7-DOF (i.e., translation, rotation and scale).
However, it is equally important to improve the accuracy of localiza-
tion and tracking within SLAM over time, as the initialization using
the depth map rendering inherently added a significant amount of
error, which ultimately stems from sensor inaccuracies. This applies
to both rotational and translational discrepancies.

In order to solve this problem, our solution is to minimize the dis-
tance between the reconstructed 3D map points and the 3D building
model façade based on graph optimization, followed by three steps.

4.1.1 Identifying the Corresponding Façade

The yaw angle and the position of current key frame are given by
θ and (x,y,z). The horizontal field of view of the camera can be
calculated according to the intrinsic parameters, denoted as ∆θH .
Let f denote the focal length, and W being the width of input image.

∆θH = 2∗
arctan(W

2 )

f
(4)

Then within[θ − ∆θH
2 ,θ + ∆θH

2 ], we calculate a line of sight,
i.e., ray-trace, at intervals of 4◦, followed by calculating the in-
tersection points of the line of sight with all façades. At the
end, we retain only valid intersection points with façades to build-
ings. By doing this, the corresponding façades are identified. Let



B = {B11,B12, ...,Bi j, ...,Bml} represent all façades j of all build-
ings i in 2.5D map. m denotes the number of buildings, l denotes the
number of façades in each building. Given the intersection points,
we establish a boolean vector Bisvisible, if the building façade is
visible, we set the value isvisible true, otherwise it is false.

Bisvisible = {B11isvisible ,B12isvisible , ...,Bi jisvisible , ...,Bmlisvisible} . (5)

4.1.2 Point-Façade Association

To restore the correct scale of the reconstructed point cloud map,
only the 3D points belonging to at least a single façade are relevant.
We utilize the depth mask from the 2.5D map again given the current
sensor pose Tsensor(i) to filter out those points which do not belong
to buidling façades .

Given the remaining 3D map points and the corresponding
building façades, we calculate for the 2D normal distance d be-
tween each map point and the building façade it belongs to. Let
P = {P1,P2, ...,Pi, ...,Pn} f k, fk ∈ F be the set of 3D map points vis-
ible in key frame k, fk, where fk belongs to the collection of all
key frames F . Further let pi represents the orthographic mapping
coordinates of Pi onto the ground plane, and we finally determine
the closest façade and the smallest distance d following

∀pi,Bi jvisible = argmin
Bi jvisible∈Bisvisible

‖d(pi,Bi jvisible)‖
2. (6)

4.1.3 Iterative graph optimization

To reduce residual errors, our graph optimization uses each key
frame and its associated map points as input. It includes geometric
error for map points and reprojection error for the key frame pose.

Geometric Error We use unary edge graph optimization based
on the g2o framework and perform non-linear minimization for every
3D map points of each key frame before point-façade association.

Pi = argmin
Pi

n

∑
i=1

ρ‖Axi +Byi +Czi +D‖2 (7)

where Pi = (xi,yi,zi) is a 3D map point reconstructed by SLAM,
and Ax+By+Cz+D = 0 represents a 3D building façade, D =
−(Ax0 +By0 +Cz0)), Pbuilding = (x0,y0,z0) is a 3D point on the
corresponding building façade Bi jvisible according to the results of our
point-façade association. Geometric error represents the first kind
of edge to connect 3D map points in the graph optimization process.

Reprojection Error After optimizing the map points, we update
the pose of key frame which can observes the map point. The map
points modified by geometric error have a new position, therefore
we update the pose of the corresponding key frames using the re-
projection error. In the reprojection error function, K is denoted as
the camera intrinsic parameters matrix. ηi are the coordinates of the
associated feature point corresponding to map point i, Pi, ρ is the
robust Huber cost function. Finally, Tfk is the 6-DOF pose of key
frame fk:

Tfk = argmin
Tfk

n

∑
i=1

ρ‖ηi−KTfk Pi‖2 (8)

The reprojection error in Eqn. 8 represents the second kind of edge
to connect 3D map points and camera poses.

GPS Sensor Optimization Due to the continuous use of depth
image information from the actual sensor pose estimate Tsensor(i) in
the alignment procedure, drift in the GPS information can be identi-
fied comparing the number of feature matches between subsequent
frames. For pure purposes of visual validation, this is illustrated in
Fig. 3.
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Figure 4: The time cost of initialization. Our method significantly im-
proves the time performance of initialization in all challenging datasets.

In practice, a comparison of the area covered by the building
masks, i.e., a rapid change selfsame, triggers a change of the be-
haviour of our method. In this case we use the estimated pose from
SLAM instead of the original sensor-based pose estimate in depth
image creation.

Due to the inaccuracies of the sensor values, a weakly constrain-
ing error function to incorporate the sensor data at all times into the
SLAM system is desirable:

Tslam(i) = argmin
Tslam(i)

n

∑
i
‖∆Tslam(i)−∆Tsensor(i)‖2 (9)

∆Tslam(i) denotes the relative pose between the frame i−1 and
the frame i from SLAM. Similarly, ∆Tsensor(i) is the relative pose
between frame i− 1 and the frame i from sensor. Considering
Tslam(i−1) and Tslam(i) as two vertices of a binary graph optimiza-
tion problem, the difference between them serves as an optimal edge.
In case the difference between the optimized result and the poses
from SLAM exceeds a certain threshold, the optimization result is
overall discarded.
5 EXPERIMENTS

For evaluating our approach, we used a Microsoft Surface tablet
equipped with additional sensors to collect one datasets including 5
sequences on the university campus. Each sequence includes RGB
images, corresponding depth images created from the sensor pose
estimates, inaccurate GPS sensor information and a 2.5D map of the
regional environment. The resolution of the images was chosen to
640× 360 pixels. All sequences include rapid motion and a com-
paratively small baseline w.r.t. the scene distance. The sequences
were named 07-08, 01-02, 02-21, 05-06, and 12-21. Because the
12-21 sequences is very long, we randomly sliced it into two parts
to create the sixth sequences. All the experiments were performed
offline using a 3.2GHz Inter Core i5 iMac 2015. Some results for
individual frames are shown in Figs.5 and 6.

5.1 Initialization Analysis
First, we compare the accuracy and computational performance of
our initialization method to the standard ORBSLAM2 implementa-
tion on our scenarios.

Runtime Performance Comparison We tested each sequence
10 times using our initialization method, original ORBSLAM2 ini-
tialization and DSO (Direct sparse odometry) [11] respectively,
recording the time (in s) until successful initialization. Fig. 4
depicts the results of this experiment. Due to the excessive feature
matching, ORBSLAM2 requires a considerable number of frames
and much more time. Due to the unstable lighting changes in the
scene and other reasons, the initialization of DSO takes the most



Table 1: Comparison of initialization performance indices between ORBSLAM2 and our method. The following table records the number of
matched points between map points and the following frame after initialization, as well as matches after optimization. The results prove our
method can improve the overall system robustness.

Dataset 07-08 01-02 02-21 05-06 12-21-01 12-21-02
Method ORBSLAM2 Our ORBSLAM2 Our ORBSLAM2 Our ORBSLAM2 Our ORBSLAM2 Our ORBSLAM2 Our
Matches 190 1049 320 337 199 607 227 500 235 667 112 628
Matches after 170 1027 305 331 192 642 219 483 226 650 102 500optimization

time compared to ours and ORBSLAM2, and even fails on the 12-
21-02 sequence. Our method is able to complete the initialization
procedure using only a single frame, which essentially means instant
SLAM operation.

Robustness Comparison In order to verify the robustness of
the proposed method, we record the average numbers of matched
points between the map and the rest of the frames after initialization.
The number of matches reflects the matching performance of initial
map points with feature points of the subsequent frames.

From the results given in Tab. 1, our method retains a large num-
ber of map points from the initialization on all sequences comparing
with the ORBSLAM2. After the optimization stage, a large number
of these points are retained, in turn having a high number of obser-
vations with feature points in subsequent frames. The ORBSLAM2
method is challenged by the small baseline distance travelled. There-
fore the initialization method adopting frame to frame matching
leads to a considerably lower number of map points.

The GPS limitation and initialization In extreme cases, pose
errors from regular GPS/IMU sensor devices are known to be up to
45deg in rotation and 40m in translation. In practice we experienced
errors more in the range of several meters and up to 20 degrees
around any axis. Our initialization procedure is able to cope with
these errors, nevertheless success also depends on the given environ-
ment. On one hand, success or failure of our approach is related to
the users operation. When users hold the camera device relatively
still or avoiding rapid motion, our initialization is more likely to
succeed. On the other hand, once the initialization is successful, the
GPS/IMU errors are not crucial because these errors will be rectified
in the subsequent optimization. Through our hybrid multi-modality
graph-based optimization, we mainly rely on the constraints from
the building model and the projection error to ensure the accuracy
and scale of the SLAM system is correct. In case of GPS/IMU
failure, the system is able to quickly re-initialize once the data from
GPS/IMU is acceptable.

5.2 Reconstruction Map Comparison
In the left column of Fig. 7 we compare the reconstructed map
using the original ORBSLAM2 approach with our initialization and
optimization approach respectively.

The map reconstructed by the original ORBSLAM2 has no real
scale information (green), hence, the scale is entirely wrong. In
contrast, the maps reconstructed by our method (blue and red) are
up to scale and are aligned to the real building models. Although the
map reconstructed only by initialization method (blue) has absolute
scale, misalignment errors are observable in certain areas. After
using the proposed optimization method (red), the reconstructed
map matches the real building map very well. The building façades
have several large holes and architectural bulges in it, still feature
points in the actual images are detected. These feature points cannot
be closely aligned with the model of the façade.

5.3 Trajectory Comparison
As a next experiment, we compare the trajectory of the key frames
during tracking given the data acquired from consumer-grade sensors
(GPS and IMU), the original ORBSLAM2, our initialization and our
initialization method including the optimization, respectively. The
trajectories are visualized by differently colored discrete points in
the right column of Fig. 7.

The camera trajectory estimated by ORBSLAM2 (green) has no
scale information, in analogy to the respective reconstructed map.
There is an obvious difference between the trajectory from consumer
sensors (rose red) to the other methods, as some key frames have
no corresponding GPS trajectory points associated at all. From the
sensor trajectory, a serious drift problem due to the randomness and
uncertainty in consumer sensors is observable.

5.4 Fixed-point Position Comparison
While there are no real ground-truth position measurements avail-
able for the entire trajectories, a set of geodetically accurately po-
sition measurements are available. Therefore when collecting the
sequences, we deliberately chose the initial and final starting points
of the sequences at these fixed points. Therefore, in the absence of
ultra-precision GPS values, we are still able to give a hint on the
accuracy of our initialization and tracking approach, comparing the
difference between the camera translation estimated by our method
at fixed points and the ground truth position at these points.

Unfortunately, third procedure did not work for all sequences. For
the 02-21 sequence, the recorded GPS is overall very noisy, such that
matching the fixed points was not possible. However, comparing
the final camera position with fixed points on ground in 07-08 and
12-21 sequences, the Euclidean distance error was about 2 meters.

6 DISCUSSION AND CONCLUSION

In this paper, we propose an instant initialization algorithm for
feature-based monocular SLAM and a hybrid optimization scheme
combing multi-modality data in an outdoor AR platform. Our single
frame initialization provides an accurate metric camera registra-
tion, while our optimization method aligns a large-scale SLAM
reconstruction and the associated camera trajectory based on easily-
available 2.5D map and poor GPS sensor data. Comparing our
method to results published in the state-of-the-art, our method per-
forms plausibly in terms of accuracy, robustness and computational
effort, at the benefit of being relatively easy to implement.

While our system has the potential to enable accurate outdoor
AR visualization, there exists some limitations in our method. First,
due to the complexity of the outdoor localization problem in general,
there is a lack of available tools, framework and benchmarks. Our
method is not available to work in all outdoor environments, however
it is friendly to city scenes. Second, we assume the city environment
is planar-world, the urban horizon generally does not fluctuate much,
except for individual mountainous cities (e.g. Chongqing, China).
Third, the feature detection approach used in SLAM is easily fouled
by dynamic objects, such as cars or pedestrians, but also by static
objects, such as trees, which are obviously not contained in the
building depth masks. Any further extension of the map data used,
such as information about other super-surface infrastructure or the
use of adaptive models to identify dynamic content in imagery is
expected to have a positive effect on the performance of the proposed
system.
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Frame #38 Frame #51 Frame #170 Frame #180

Figure 5: Visual comparison of model reprojection error for Sequence 07-08 using our SLAM-based method (top) and pure GPS and compass-
based localization (bottom).

Frame #39 Frame #70 Frame #166 Frame #169

Figure 6: Visual comparison of model reprojection error for Sequence 12-21 using our SLAM-based method (top) and pure GPS and compass-
based localization (bottom).
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