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Fig. 1: From a SLAM map created on a smartphone (left), the system determines an accurate global device localization which can
be used for augmented reality overlays (right). Here, a geo-registered city model is rendered in yellow on the building facade, with
SLAM map points in red. The edges of the model are visibly aligned with the building extents.

Abstract—We propose the combination of a keyframe-based monocular SLAM system and a global localization method. The SLAM
system runs locally on a camera-equipped mobile client and provides continuous, relative 6DoF pose estimation as well as keyframe
images with computed camera locations. As the local map expands, a server process localizes the keyframes with a pre-made,
globally-registered map and returns the global registration correction to the mobile client. The localization result is updated each time
a keyframe is added, and observations of global anchor points are added to the client-side bundle adjustment process to further refine
the SLAM map registration and limit drift. The end result is a 6DoF tracking and mapping system which provides globally registered
tracking in real-time on a mobile device, overcomes the difficulties of localization with a narrow field-of-view mobile phone camera,
and is not limited to tracking only in areas covered by the offline reconstruction.

Index Terms—Image-based localization, monocular SLAM, real-time tracking, global positioning, mobile augmented reality

1 INTRODUCTION

Augmented reality interfaces rely on pixel-accurate and ubiquitously
available pose estimation. To achieve this, vision-based methods for
global localization are the most promising, because of their high preci-
sion in estimating the camera pose, and their ability to run in real-time
on mobile phone hardware. “Global localization,” while sounding like
an oxymoron, means localization, or determining the position and ori-
entation of a device, in a global reference frame. State-of-the-art ap-
proaches to real-time global localization track a pre-made point cloud
[38] or edge [31] model of the environment, which could be registered
to a useful global reference frame, such as the floorplan of a building
or a geographic coordinate system such as a UTM zone.

There are several problems with directly tracking the globally-
aligned point cloud. Typically, the point cloud needs to be stored on
the device to achieve real-time performance, which introduces prob-
lems in data transfer, storage, and maintenance. In terms of the in-
terface experience, the user may have to physically search with the
camera for some time, until a proper viewpoint is found, from which
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the system can localize. The localization estimate itself may then take
several seconds to compute, further adding to the system startup cost.
Another issue is that the global point cloud is made in a offline process,
and thus becomes outdated when the environment geometry, appear-
ance or illumination changes.

In this work, we solve these problems with a novel system con-
cept, which combines a client-side monocular simultaneous localiza-
tion and mapping (SLAM) system with a server-side map registration
process to achieve wide-area localization on a mobile device. We see
our approach as the logical next step after the previous work of Arth
et al. [1], which used rotation-only tracking and mapping on a mobile
client to create a panorama, while iteratively computing the globally-
referenced device location in a background process. In our work,
a SLAM system provides rotational and translational pose tracking
and mapping on the mobile client, while a networked server receives
keyframes from the client and sends back an estimated global regis-
tration. As keyframes are added, the registration is recomputed and
potentially improves given the added information. Anchor points and
their observations are integrated into client-side bundle adjustment to
further refine the alignment and control drift.

Because the SLAM system maps and tracks the environment with-
out any prior environment knowledge, the system can begin operat-
ing immediately in a local reference frame, without waiting for a suc-
cessful global localization. Furthermore, the system performs camera
tracking based on a current visual map of the scene, which allows
for globally-referenced tracking even when parts of the scene have
changed since the offline model was captured.

Our contributions are as follows: 1) A novel system concept for
global localization on smartphones, which combines local SLAM and
global map registration; 2) A system design which allows for parallel
operation of the localization process on the server, while the client-
side system is free to continue expanding and refining the map lo-
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Fig. 2: Illustration of system stages using an indoor video processed with our system. (a) Tracking starts immediately in the initialization phase.
(b) When the camera moves far enough, the map (in pink) is created and the first two keyframes are sent to the server. (c) When the localization
result is received, global annotations are shown. (d) Additional keyframes expand the map and refine the localization.

cally; 3) An iterative matching and registration scheme which allows
for much of the information needed for localization to be cached on the
server; 4) Evaluations of our system, in both indoor and outdoor en-
vironments, including timing and positional accuracy measurements.
Our evaluations highlight the advantages of SLAM localization over
a model-based approach which uses single-image localization on each
frame.

2 RELATED WORK

The most common approach for global registration of a mobile camera
is to rely on other sensors such as GPS and compass to determine the
device position and orientation. For example, the MARS backpack-
mounted system used a worn differential GPS unit for positioning [13].
Augmented reality apps today often use the built-in GPS and compass,
but this only provides coarse positioning (within tens of meters), which
is not suitable for pixel-accurate graphical overlays, and not available
indoors.

Many approaches exist for localization from a single image, in some
cases only with accuracy comparable to consumer GPS [42, 32, 34,
40, 36, 37, 5] and often without regard to the subsequent tracking
phase [17, 22, 20, 7, 21]. For our system, we chose a relatively simple
method of direct matching from image features to 3D points, and our
work is focused on the integration of image-based localization into a
flexible, real-time tracking and mapping system which is suitable for
implementation and use on a handheld device.

Visual SLAM systems use the camera itself to determine device po-
sition, by tracking and mapping detectable features in the surrounding
environment. Davison et al. [10, 11] were the first to propose monoc-
ular SLAM using a filtering approach. Klein and Murray proposed
keyframe-based SLAM [18]. In keyframe-based SLAM, keyframes
are sampled from the camera and processed in a background thread to
produce a point cloud reconstruction (the map). In parallel, the current
camera image is tracked using the map. By triangulating and track-
ing thousands of points, the system provides accurate pose estimation
across a wide range of viewpoints in the scene. In general, monocu-
lar SLAM provides high accuracy camera tracking in real-time, and is
even capable of running on mobile phone platforms [19]. However,
the camera pose is only given in a local reference system, defined with
respect to the first camera frame or an initialization target. [9]

In the context of SLAM systems, the process of detecting an overlap
between the current map and a pre-existing map, and then estimating
the registration between the two maps, is called “loop closure.” Typ-
ically, loop closure is used to detect overlaps within a single SLAM
map, for example when the path of the camera crosses over itself. For
example, Cummins and Newman describe appearance-only SLAM,
which builds a topograhic map based on visual loop closures [8, 9]. In
our case, we are interested in detecting the overlap of the entire local
map with some part of a larger, pre-made global map. Some previous
SLAM systems with loop closure (c.f . [12, 39]) have a similar con-
cept to our system, namely fast initialization in a local map followed
by loop closure with an existing map. However, we are the first to ap-
ply this system concept for wide-area localization on mobile phones,
and our system design addresses the issues which arise from having
limited computational resources on the client device, an asynchronous

Fig. 3: Camera keyframe paths estimated by SLAM localization (solid
lines) and ground truth from the ART-2 optical tracker (dashed lines)
for six indoor image sequences.

server-client implementation, and a very large feature database (mil-
lions of features).

An alternative to online mapping with SLAM is model-based track-
ing, i.e., tracking directly from a pre-made environment model. Re-
itmayr and Drummond [31] present a system for edge-based track-
ing from textured polygonal building models. Arth et al. achieved
real-time rates on a mobile phone while localizing each camera frame
against a point cloud scene model [4]. Takacs et al. describe a system
for real-time localization with respect to geo-registered panoramas, but
are restricted to continuous tracking from the visible dominant plane
[35]. Ventura and Höllerer separated localization and tracking in a
client/server system for real-time, general motion tracking in outdoor
environments using a pre-made point cloud model [38]. Lim et al. pro-
pose amortizing the cost of feature recognition across several frames,
aided by feature tracking, so that localization and tracking can both
take place on the client [23]. The limitation of these model-based
tracking approaches is that the online tracking cannot extend beyond
what was captured in the offline model.

A few previous works also use some combination of mapping and
tracking with global localization. Arth et al. use visual orientation
tracking on a client and perform 6DoF localization from the result-
ing panorama as a background task [1, 2]. While the system tracks
pure rotational movement of the camera, translational movement is
not supported. Lothe et al. register a SLAM map captured from a
moving vehicle to a polygonal 3D city model, but require an initial-
ization provided by GPS or manual input [24]. Oskiper et al. use
a stereo visual odometry system for relative motion estimation, and
compute global registration corrections from matches to a global fea-



ture database [28, 29]. This approach is conceptually similar to our
system, in that a client-side tracking result is corrected by matching to
a global reconstruction. However, the advantage of our system is that,
once localized, the client can continually track from the local SLAM
map without any overhead of global feature matching on the server.
The visual odometry approach of Oskiper et al. does not maintain a
persistent local map, and thus requires constant global feature match-
ing to avoid drift.

Castle and Murray describe an approach for detecting and localiz-
ing multiple small objects while using a keyframe-based SLAM sys-
tem [6]. However, their system would not be suitable for global lo-
calization, because each localization based on a small detected object
would give a noisy global localization estimate, and some method of
reconciling the conflicting estimates would be needed. In our work,
we adopt a similar method for multi-view object detection and local-
ization, which uses feature matching to the global database, point tri-
angulation and registration. To estimate an accurate and stable global
localization, we treat the entire surrounding environment as the single
object to be detected and localized, and update and refine the localiza-
tion as keyframes are added.

3 SYSTEM OVERVIEW

The client side of our system consists of a keyframe-based SLAM im-
plementation which is capable of running at real-time rates on a smart-
phone. As in the work of Klein and Murray [18], the SLAM system
samples keyframes from the video stream and performs bundle adjust-
ment in a background thread to optimize the keyframe camera poses
and the 3D locations of triangulated points. At the same time, the sys-
tem tracks the estimated point cloud (the map) in each camera frame in
real-time, providing live pose estimation, which can be used for aug-
mented reality rendering. To initialize the map, we use the method of
Mulloni et al. [27], which refines an initial planar model of the scene,
and thus can begin tracking immediately from the first frame.

The server process has access to a point cloud reconstruction of the
target environment, which has been created beforehand, offline. Many
previous works consider how to create such point cloud reconstruc-
tions from single-camera videos [33] or panoramic videos [38]. For
our outdoor tests, the point cloud is registered to a global coordinate
system by incorporating GPS measurements [3] and directly aligning
to a geometric model of the environment [24] provided from public
sources.

During and after tracker initialization, but before any localization
result has been computed, the mobile client operates in a local refer-
ence system, defined with respect to the first camera frame. In this
state, global augmentations can be displayed with low accuracy, if
GPS, inertial sensors and compass are available. It is also possible
in this state to create and display annotations which are stored in the
local coordinate system. Once at least two keyframes are available,
the system attempts to compute a global localization of the keyframes
using their estimated relative poses and matches with the server-side
point cloud (see Section 4). If successful, the mobile client begins
operating in the global coordinate system, so that augmentations are
displayed more accurately, and the locations of annotations added by
the user can be transferred to the global coordinate system. Sample
system output images and localized camera paths from our indoor ex-
periment (Section 6) are shown in Figures 2 and Figure 3, respectively.

4 LOCALIZATION PROCESS

The localization process is illustrated in Figure 4. 1) After initializa-
tion, the first two keyframes are matched to the global point cloud on
the server. 2) These matches and the keyframe poses are used to tri-
angulate corresponding local points, from which the system attempts
to determine a 7-DoF transformation (translation, rotation and scale)
which determines the global poses of all the keyframes. 3) Matches
from subsequent keyframes are used to triangulate more points and
improve the absolute orientation estimate. 4) Client-side bundle ad-
justment optimizes the localization solution as more keyframes and
points are added. These steps are discussed further in the following
subsections.
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Fig. 4: Iterative localization process: 1) Feature matching; 2) Point
triangulation and registration; 3) Integration of additional keyframes;
4) Client-side bundle adjustment with anchor points.

4.1 Feature Matching
From each keyframe, SIFT features [25] are extracted and matched to
the global points. Each global point is represented by the mean de-
scriptor of all corresponding features in the offline reconstruction. A
randomized kd-forest [26] is used for fast, approximate nearest neigh-
bor search. We apply the second neighbor ratio test [25] to remove
ambiguous matches and ensure that each point matches to at most one
feature in each keyframe.

We denote here the N global points as Xi, where i ∈ 1 . . .N, the M
keyframes as K j, where j ∈ 1 . . .M, and the Fj features in keyframe
K j as f j,k, where k ∈ 1 . . .Fj. If feature f j,k is matched to Xi, then
f j,k → Xi. As depicted in Figure 5, each global point maintains a list
of matched features from the keyframes, Li = { f j,k|Xi→ f j,k}. When
a new keyframe is added, its feature matches are added to the end of
the appropriate lists.

4.2 Point Triangulation
For each global point Xi, we take its aggregated set of matched features
Li and attempt to find a corresponding local point X ′i which fits the
observations. This triangulation is computed in the local SLAM ref-
erence frame by using the keyframe camera poses as estimated by the
SLAM system. Because the number of matches per point is expected
to be low, we use an exhaustive pairwise search over all features in Li
to find a consistent triangulation. For each pair of features matched to
a global point, we compute a linear triangulation [15]. Any observa-
tion with a re-projection error of less than five pixels is considered an
inlier, if the point lies in front of the camera. The point triangulation
with the highest number of inliers is chosen as the best triangulation,
which is refined by non-linear minimization of the re-projection error
over all inlier measurements [15]. Any triangulation with at least two
inliers is accepted into the next stage of processing. This allows for
some inaccurate points to be accepted, but these outliers are handled
by robust estimation in the next stage.

We fully re-compute all triangulations after each keyframe addition,
since additional matches might lead to new point triangulations, and
the keyframe poses may have been updated by the client-side bundle
adjustment between keyframes. Since the point triangulations are in-
dependent calculations, they can easily be computed in parallel.



X1

X2

X3

X4

XN

f1,3

f1,2

f1,6

f2,5

f2,1

f3,6

f2,7 f3,4

...

X’1

X’2

X’4

X’N

...

Feature matches

G
lo

ba
l p

oi
nt

s

Tr
ia

ng
ul

at
ed

 lo
ca

l p
oi

nt
s f4,4

f4,3

f4,1

Fig. 5: Illustration of feature matching and triangulation. Each global
point, Xi (left) maintains a list of matched keyframe features f j,k (mid-
dle) and a triangulated local point X ′i (right) which fits the feature
observations. When a new keyframe is added, matched features are
added to the lists (in bold) and the local point triangulations are up-
dated.

4.3 Point Registration
Given all corresponding global and local points Xi and X ′i , we now
compute the similarity transform T which aligns the two point sets,
using the absolute orientation method of Horn [16]. Because some
points may have a poor triangulation due to noisy measurements or
mismatches, we use a RANSAC loop [14] to robustly estimate the
alignment transform. The RANSAC loop iteratively samples a mini-
mal set S of point indices and computes the similarity transform which
minimizes the point-to-point distance error metric:

e = ∑
i∈S
||Xi−T X ′i ||2. (1)

In a typical RANSAC scheme, the residual error for each corre-
spondence is thresholded to label inliers and outliers, and the sam-
ple with the highest number of inliers is selected as the best solution.
However, in the case of point alignment, it is unclear how to correctly
select an error threshold which separates inliers from outliers, because
the threshold depends on the scale of the point cloud and the noise in
the data. To address this problem, Raguram and Frahm proposed the
Residual Consensus (RECON) algorithm, which adaptively selects an
inlier threshold by looking for a consensus set of inliers [30].

In our case, we note that we can avoid the difficulties in choos-
ing a 3D distance threshold by using a different criterion for choosing
the best RANSAC sample. Instead of counting the number of inliers
based on the point-to-point error metric, we project the global points
into the keyframes and compute the re-projection error for all putative
observations:

residi, j,k = ||proj(PjT−1X ′i )− f j,k||2 (2)

where Pj is the camera matrix for keyframe K j. The re-projection
error is invariant to the scale of the reconstruction, and allows us to
choose an inlier threshold in pixel units. In our experiments, we used
a threshold of five pixels. All feature matches are tested, not just those
which were successfully triangulated. In our experiments, we found
that this method of sample selection gave a higher number of inliers
in successful cases, which made it easier to determine when the lo-
calization result should be accepted – we used a threshold of twenty
inliers. Furthermore, this method produced more stable results across
different datasets, in comparison to manually tuning the point-to-point
error threshold for each dataset.

5 ASYNCHRONOUS IMPLEMENTATION

In general, localization is not expected to be computed within the time
of one frame capture (33 milliseconds), and the computation is ac-
tually on the order of seconds (see Section 6). For this reason, we

must compute the localization asynchronously to allow for continuous
tracking. This means that the localization will work with map infor-
mation which might be outdated by the time the result is ready.

5.1 Caching
The server keeps a cache of received and computed information, to
avoid unecessary re-computation. The server stores extracted features
and descriptors for each keyframe and matches between the features
and global points. As described in Section 4.1 the matches are stored
in an associative list structure, indexed by global point. These lists are
cached on the server between localization requests, since the feature
matching is independent of any further localization result and needs to
be computed only once per keyframe.

When a new keyframe is added by the SLAM system, the client
only needs to send the new keyframe’s image data (compressed using
JPEG) and the current estimated poses for all keyframes. It is neces-
sary to inform the server of all current pose estimates, because these
might have been updated by the client-side bundle adjustment since
the previous localization request.

5.2 Iterative Estimation
Once the estimated localizing transformation is received by the client,
the question arises of how to use this transformation in the SLAM
system. One approach is to directly transform the map points and
keyframes. However, the asynchronous nature of the system makes
this problematic, because of the need to keep all map copies consistent,
including those which are used by queued and in-process localization
requests.

We chose an alternative approach: instead of directly transforming
the map, we store the localization transform T separately and keep the
SLAM map in the local reference frame. When a new localization
transform received, the system simply replaces the old transform with
the new estimate. The inverse transform T−1 is used to bring globally-
referenced content into the local reference frame for rendering.

One unavoidable consequence of our asynchronous design is that
the localization server works with potentially outdated keyframe pose
estimates. During the localization computation time, more keyframes
may be added and local or global bundle adjustment may have changed
the keyframe pose estimates. This means that the received localization
transform may not be the optimal alignment for the current map. Our
assumption is that the map will not change so substantially that this
would cause an issue, since the system keeps the first keyframe pose
and the map scale constant.

5.3 Bundle Adjustment
After computing the optimal similarity transformation, inlier 2D-3D
observations of global points are used for further non-linear refinement
of the localization. This adjustment could be performed on the server,
but, while the server is processing, the client may be adding keyframes
and also adjusting the map in parallel. In order to avoid conflicts and
merges between the server-side and client-side maps, we chose to in-
stead integrate the global point observations into the client-side bundle
adjustment process.

In addition to the localization transform T , the server also sends the
set O of all point-feature pairs which were counted as inliers. Because
the SLAM system always operates in the local reference frame, the
bundle adjuster uses the current inverse transform T−1 to transform
the global points into the local reference frame. The global points
are kept constant in the bundle adjustment and act as “anchor” points
which help to eliminate drift in the SLAM map. The combined error
term minimized in bundle adjustment is:

∑
(i, j,k)∈OL

||proj(PjXL
i )− f L

j,k||
2
2

+ ∑
(i, j,k)∈OG

||proj(Pj(T−1XG
i ))− f G

j,k||
2
2

(3)

where the labels L and G are used to identify local information from
the SLAM map and global information from the localization process,
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Fig. 6: Localization timing for indoor point cloud (132,994 points).
For each keyframe, the system extracts SIFT features, matches them
to the point cloud, triangulates the matches into local points, and reg-
isters the local points to the global point cloud in a RANSAC loop.

respectively.

5.4 Server Design
For small datasets (such as our indoor dataset, described in Section 6),
it is feasible to maintain one kd-tree index for all descriptors, which is
loaded when the server starts. In the outdoor case (Section 7), we have
reconstructed a total area of about 10,000 m2 which resulted in a de-
scriptor database of 3.9 GB. At this size it is still possible to load and
store all descriptors in memory; however, as we increase the size of the
database, nearest neighbor performance decreases and query time in-
creases. Given that our reconstruction produces about 900 descriptors
or 450 KB per meter squared, we can extrapolate that for the entire city
center area of 763,730 m2 we would produce 327.3 GB of descriptors,
and for the entire city of 64.19 km2, we would produce 26.44 TB. To
allow the system to scale to such large datasets, we apply two parti-
tioning techniques to reduce the set of points under consideration for
one client-server localization session.

We apply cell partitioning to the point cloud. In our case, we manu-
ally separated out for three courtyard areas in the city. Visibility parti-
tioning [4] or regular or hexagonal grids [1, 41] could alternatively be
used for automatic spatial partitioning. When a client starts a localiza-
tion session, it sends its estimated latitude and longitude (measured by
GPS), which is used to select the appropriate cell.

Additionally, a single cell partition is divided into eight orientation
slices [2]. One orientation slice contains all features whose viewing
direction is within the slice. We used eight slices spaced 45 degrees
apart, with an overlap of 30 degrees on either side, so that each slice
covers an angular area of 105 degrees total. In each slice, all descrip-
tors for the same point are averaged together, so that each point has
one average descriptor. The client sends a compass reading which is
used to select the appropriate slice of points from the partition.

When the first keyframe is received from the client, the appropriate
slice from a single partition is loaded into memory along with its kd-
tree nearest neighbor index. Because we keep the point cloud slices
and kd-tree indexes as serialized files, startup time is negligible.

6 INDOOR EVALUATION

To test our system in an indoor setting, we built an office cubicle scene
in a 3×4 meter space with walls on all four sides and desks on three
sides. Visual texture was added by placing posters on the walls and
desks as well as other textured 3D objects (see Figure 2). An ART-
2 infrared optical tracking system was mounted at the corners of the
room. The optical tracking target was attached to the back of an Apple
iPad 2 tablet.

To create a global reconstruction of the scene, we captured a long
video sequence with the tablet, observing the scene from many view-
points and distances. This video was subsampled to about 400 im-
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Fig. 7: Average keyframe localization accuracy for all indoor se-
quences, using the ART-2 optical tracker for ground truth measure-
ments.

ages which were then processed in a large-scale structure-from-motion
pipeline. The external position measurements were integrated into the
reconstruction pipeline, to create an aligned point cloud in meter units.
The indoor reconstruction contains 132,994 points and 1,261,918 de-
scriptors (616 MB). Figure 3 shows a visualization of the point cloud.
We manually created 3D annotations, consisting of quads around var-
ious posters and boxes in the scene, in the global reference system of
the aligned point cloud.

We also captured twelve test video sequences, named I.1–I.12, with
the tablet, covering many different viewpoints in the scene. These se-
quences were then processed in our system, with the client and server
separated on different computers. Six of the resulting localized cam-
era paths are visualized in Figure 3 with a top-down view of the room.
Frames from sequence I.2 are shown in Figure 2.

A Macbook Pro with a 2.8 GHz Intel Core i7 dual-core processor
and 16 GB RAM was used for the localization server. A breakdown
of timing for different localization tasks is shown in Figure 6. Fea-
ture extraction and matching times are roughly constant per keyframe,
taking, on average, 1.53 and 0.15 seconds, respectively. We used the
single-core SIFT extraction implementation of OpenCV, and so we
expect that this step could be made significantly faster with a multi-
core or GPU implementation. Point triangulation time increases as
more matches are added, but the computation time is negligible com-
pared to other tasks (0.03 seconds on average). Point registration time
also increases as more matches are added, from 0.26 seconds with two
keyframes, up to 1.10 seconds with all thirteen keyframes. The point
triangulation and registration steps were parallelized, but faster per-
formance could be achieved by adding more cores or using a GPU.

Arguably, the most important timing measure is the “time-to-first-
localization” – the aggregate amount of time taken from system startup
to the first usable localization result produced by the system (when
the success threshold on number of inliers is exceeded). This time
consists of both the SLAM initialization period and the time taken to
match and localize at least the first two keyframes. We recorded an
average initialization time of 4.6 seconds, and an average localization
time of 4.8 seconds, for a total average time-to-first-localization of 9.4
seconds.

We also investigated localization performance when parts of the
scene are missing from the reconstruction. We tried to cover ev-
ery possible viewpoint with our reconstruction video. However, in
a practical setting, some parts of the scene may be missing from the
reconstruction; for example, we might have a reconstruction of a well-
photographed landmark, but not the areas around it. Also, the modeled
scene may have changed since the time of capture, or there may be oc-
cluding objects in the current environment which were not covered in
the offline reconstruction.

To test SLAM localization in these scenarios, we made a partial
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(a) SLAM Localization (our method)
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(b) Model-based tracking-by-detection with an ideal model
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(c) Model-based tracking-by-detection with a non-ideal model (walls, but not tabletops)

Fig. 8: Number of points tracked (in black) in image sequence I.2 using different tracking methods. The red areas indicate tracking failures
(less than twenty points tracked), and the blue area indicates SLAM initialization. The green bars indicate SLAM localization inliers using the
walls-only model.

reconstruction by removing a part of the point cloud. We removed
everything on the tables from the point cloud and left only the posters
on the walls. This simulated the scenario when the objects on the
walls have been reconstructed, but the objects on the desks have been
moved or are occluded. In an office setting, this scenario has practical
value since typically the objects on the desks will be moved, but the
decoration on the walls will stay fixed for long periods of time, and
thus could be reconstructed once.

Figure 7 plots the average keyframe localization accuracy for each
image sequence. Position measurements from the optical tracking sys-
tem were used as ground truth. The average localization accuracy us-
ing the full point cloud ranged from 29 to 86 mm. The accuracy us-
ing the partial point cloud was similar, ranging from 29 to 127 mm.
In three out the twelve sequences, not enough inliers were found to
provide a localization result with the partial model, because these se-
quences did not provide enough views of the walls to find sufficient
matches.

As a point of comparison, we computed a P3P [14] localization re-
sult for each frame in sequence I.2, using either the full point cloud
or the partial point cloud. This corresponds to a version of model-
based tracking, where each image is directly localized using the point
cloud. The per-frame localization time is not considered for our pur-
poses, and these tracking results were computed offline. Thus this test
does not evaluate a practical real-time tracking system, but instead is
a representation of ideal model-based tracking performance.

The number of points tracked using the SLAM system and model-
based tracking is shown in Figure 8. The red bars indicate when the
system fails to provide a camera pose, because too few points are
tracked, using a threshold of twenty points. The SLAM system cre-
ates and tracks its own map, and so its behavior is independent of
the global point cloud. However, the model-based tracking fails for
several long periods of time when using the partial point cloud. This
is because model-based tracking can only work when the area being
viewed is in the global reconstruction. The SLAM system, in contrast,
can bridge tracking across parts of the scene which are missing from

(a) Area A (b) Area B (c) Area C

Fig. 9: Reconstructed areas in the city with building outlines and point
cloud (black dots).

the global reconstruction. The green bars in Figure 8(a) indicate the
number of localization inliers using the partial model. The number
of inliers starts at about 100 inliers with the first two keyframes and
increases as more keyframes are added.

7 OUTDOOR EVALUATION

To evaluate our system in an urban environment under realistic cap-
ture conditions, we prepared reconstructions of three large courtyards
in the city center of Graz, Austria. We denote these areas as A, B and
C. The areas were visually mapped with a backpack-mounted Point
Grey Ladybug spherical panorama camera. A differential GPS unit
was attached to the top of the camera. Panoramic images from the
capture session were processed in a structure-from-motion pipeline.
After reconstruction, we robustly aligned the camera centers to the
GPS measurements, and then further aligned the reconstruction to a
polygonal city model extracted from survey data provided by the re-
gional government. This model was created by combining 2D build-
ing outlines with aerial laser scans of the city to estimate ground and
roof geometry. The alignment process resulted in highly accurately
geo-registered 3D point clouds, specified in metric coordinates using



Fig. 10: Top: Localized images from different areas in the city center. Bottom: Localized sequence showing how the SLAM system can track
through partial or full occlusion of the global model. Here, the poster is missing from the global reconstruction, but it is mapped and tracked
locally by the SLAM system.
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Fig. 11: Average keyframe localization error for four outdoor se-
quences, using a differential GPS receiver for ground truth measure-
ments.

Seq. Inliers Average Error (m) Standard Deviation
East North Alt. East North Alt.

A.1 254 0.45 1.01 1.19 0.53 0.73 0.73
A.2 309 0.60 0.95 0.71 0.29 0.33 0.45
A.3 37 2.21 0.72 1.34 0.76 0.52 0.42
A.4 468 0.21 0.22 0.89 0.19 0.13 0.67

Table 1: Keyframe localization accuracy using DGPS ground truth.

the Universal Trans-Mercator (UTM) coordinate system. Figure 9 il-
lustrates the point clouds (in black) overlaid on a 2D city map with
polygonal building outlines.

The polygonal city model is displayed as a virtual annotation in our
localized sample images (Figures 1 and 10). This provides a qualita-
tive means of evaluating registration accuracy and the potential of our
system for use in augmented reality applications.

The SLAM system and localization client were implemented using
the Android mobile operating system. We used a Samsung Galaxy S II
for live tests of the system. In each mapped area, we performed three
live tests by initializing and localizing a SLAM map of the surrounding
buildings. We used a 3G cellular wireless connection to send keyframe
images to the localization server. The GPS and compass reading sam-
pled at initialization time was transmitted to the server to select the
appropriate slice from the feature database. Figure 1 shows sample
images of the smartphone localization system in use. These tests were
performed under weather conditions similar to the model capture.

For each live smartphone test, we recorded the time-to-first-
localization. The average initialization time, over nine samples, was
12.6 seconds and the average localization time was 5.3 seconds. In
total, the average time-to-first-localization outdoors is 17.9 seconds –
about twice that of our indoor test. However, this time is clearly dom-
inated by the SLAM initialization procedure, while the actual time

spent computing a localization is roughly the same as the indoor case.
The initialization procedure takes more time outdoors because the dis-
tance to the scene is greater, and thus a longer distance needs to be
traversed before the system can confidently triangulate points and ini-
tialize the map. Generally, we needed to walk about two meters to ini-
tialize the system, with a distance to the buildings of about twenty me-
ters. During initialization, we walked parallel to the dominant building
facade in all tests, with the camera directly facing the building facade.

To determine the extent that using a 3G cellular connection affects
the localization time, we measured the time it takes to prepare and send
the localization request from the smartphone using either 3G or WiFi.
This includes the time taken to compress the 640×480 keyframe im-
age using JPEG compression and to send the image data along with
all keyframe poses. Using 3G, we recorded an average request time of
802 milliseconds over nine trials, with a standard deviation of 90 mil-
liseconds. Using WiFi, the average request time was 226 milliseconds
with a standard deviation of 28 milliseconds.

We also recorded four videos in area A using the iPad tablet. A
differential GPS receiver was attached to the top of the device, which
provided a ground truth measure of position for testing the accuracy
of the localization system. The results for the test videos are graphed
in Figure 11 and numbers are given in Table 1. Sequence A.4 had the
most inliers and the lowest error: less than 25 cm error in the east and
north directions, and less than one meter error in altitude. Sequence
A.6 had the fewest inliers and also the highest positional error of 2.21
meters average error in the east direction. This positional error appears
to be due to incorrect rotational estimation about the horizontal axis of
the dominant building facade. We note here that the GPS receiver only
provided a 1 Hz signal, and was not synchronized with the camera, so
that there was an unknown temporal offset between the clocks of the
camera and GPS unit. The best temporal offset for each sequence
was chosen by searching within a ten-second window and choosing
the offset with the best median error, using linear interpolation of the
GPS signal. Also, the accuracy of the localization is limited by the
positional accuracy of the global point cloud and the city model to
which it was aligned.

More test videos were captured in all areas using the tablet. Some
sample localized images are shown in Figure 10, and estimated paths
in all areas are plotted in Figure 12. The bottom row of Figure 10
shows a sequence which, for some periods, viewed an object which
was missing from the global reconstruction; namely, a seasonal poster
which was not there at the time of panorama capture. This gives a
practical example of how the system can bridge tracking across areas
missing from the global model by tracking from a local map.

8 CONCLUSIONS AND FUTURE WORK

Our system provides real-time, accurately-registered camera pose
tracking in indoor and outdoor environments. In comparison to pre-
vious model-based approaches, the use of a SLAM system allows for



(a) Area A (Hauptplatz) (b) Area B (Freiheitsplatz) (c) Area C (Tummelplatz)

Fig. 12: Examples of estimated camera paths outdoors. The yellow triangle indicates the viewing direction of the last keyframe in each sequence.
For area A, the ground truth paths as measured by differential GPS are shown in blue.

continuous 6DoF tracking during the localization latency period and
robustness to occlusion of the global model. Because the SLAM sys-
tem is entirely self-contained on the client device, the cost of global lo-
calization is only incurred when the local map is expanded, and track-
ing within the local map does not require global feature lookup.

One improvement to our localization system would be to further
divide the tasks on the server into separate requests, so that feature
extraction and matching from multiple keyframe images could be pro-
cessed in parallel. This would also allow the client more control in
choosing when to request localization updates.

Outdoors, we rely on GPS and compass to choose the relevant
database partition. Because these sensors can be unreliable or unavail-
able in some urban areas, the system could also be improved by intro-
ducing some form of image-based retrieval to help choose the correct
database partition in these cases.

One interesting modification of our system would be to insert map
points from the server-side global reconstruction into the client-side
map. This would help during initialization and expansion phases, pos-
sibly easing the requirement for the user to translate to triangulate new
points in the map. We might also consider updating and extending the
server-side map with keyframes from the SLAM system.

Finally, we note that there are many yet-unexplored issues in inter-
face design for global-registered augmented reality. With fully geo-
registered tracking and rich geometric information available, such as
the city model used here, many new and interesting augmented reality
interfaces are possible. Furthermore, the ideal interface would adapt
its display to varying levels of localization accuracy and augmenta-
tion accuracy, with seamless transition between states of initialization,
locally-referenced tracking, and globally-referenced tracking.
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