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We must not forget that when radium was discovered no one
knew that it would prove useful in hospitals. The work was
one of pure science. And this is a proof that scientific work
must not be considered from the point of view of the direct
usefulness of it. It must be done for itself, for the beauty of
science, and then there is always the chance that a scientific
discovery may become like the radium a benefit for humanity.

Marie Curie

French chemist & physicist (1867 - 1934)
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Abstract

Visual surveillance has become an important topic of research in the last few years due
to the increased need for security in public places and the unbowed trend to use digital
cameras for surveillance purposes, or for integration of visual sensors in other objects of
personal use, like mobile phones or PDAs. To perform dedicated operations at camera
site, embedded platforms, so-called Smart Cameras, have become popular recently. These
platforms are equipped with one or multiple video sensors and enough computational
power to process the data stream onboard. Moreover, these platforms have additional
advantages, like robustness against environmental stress or low power consumption. The
use of smart sensors facilitates the building of large networks, and the local processing
paradigm allows for extracting valuable information at site and transmission over low-cost
and low-bandwidth communication channels.

However, until now, little work has been done on the development and investigation of
state-of-the-art algorithms for surveillance from the field of computer vision in respect of
embedded systems. On this account, in this thesis we focus on the tasks of object detection
and object recognition on smart cameras. We discuss several issues of algorithm devel-
opment on embedded DSP-based platforms, especially the issues related to parallelism
mechanisms and fixed-point arithmetic. Given an extensive overview about current work
on object detection and object recognition, we investigate both fields of development in
detail. After discussing the basic algorithm, we experimentally demonstrate the suitabil-
ity of the approach, derived in this thesis, for performing object detection in real-time on
a real-world traffic surveillance scenario, given a prototypical DSP-based hardware plat-
form. Our results encourage the integration of our algorithm into a larger system for public
surveillance. In the context of object recognition, we demonstrate, how state-of-the-art
recognition technology can be used to deploy reasonable recognition capabilities on smart
cameras. After proving the suitability on a moderate size object database, we show how
our algorithm can be used in a traffic surveillance scenario for recognition and reacquisition
of vehicles on public streets. The main advantages of our approach are the high accuracy
and the minimization in communication necessary between adjacent camera motes. By
investigating our approach in detail, we are able to draw general conclusions and state-
ments about the suitability of different aspects and methods of software development on
DSP-based embedded systems.
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Inspiration is wonderful when it happens, but
the writer must develop an approach for the rest
of the time... The wait is simply too long.

Leonard Bernstein

US composer & conductor, 1918 - 1990

Chapter 1

Introduction

I
n the last few years there is an unbowed trend to use digital cameras in all areas of
our everydays life. The reasons for that are the increased need for security in public
places and thus the more frequent use of cameras for surveillance purposes, but also

the decline in the price of sensors in general and the deployment of cameras in other
objects of personal use, like mobile phones or PDAs.

With the increase of additional video sources the field of computer vision has become
more and more important as the amount of information has to be processed somehow
automatically. One possible solution to this is the use of large data processing centers
with hundreds of computational units and considerable spatial dimensions. However, the
increase in computational power per unit and the use of video sensors for tasks to be
fulfilled under adverse environmental conditions has led to the development of a special
group of devices which are combinations of embedded computers and video cameras.

So-called Smart Cameras are embedded platforms with small form factor equipped
with a single or multiple video sensors and enough computational resources to perform
dedicated operations onboard and at site. Additional advantages of these platforms are
their low production costs, their low power consumption and their robustness to envi-
ronmental stress. There is a wide area of applicability for these type of devices: care in
residential home for the elderly, industrial robotics, domestic home care, and clearly all
types of surveillance of public places, like traffic surveillance or access control in public
transport systems. There is a big number of applications and the list is steadily getting
longer. However, in this work we are concerned about the development of algorithms for
surveillance purposes on embedded platforms only, thus we will extend that in more detail
in the following.

1.1 Computer Vision and Embedded Systems

Computer vision can be used in multiple applications like robotics, industrial engineering,
monitoring or surveillance. Especially in the area of surveillance a lot of scientific research
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and financial investment is necessary for additional precautions against terroristic activity
and assaults. But also due to the increased amount of individual transport on public
highways and the resulting traffic jams monitoring is necessary and automated or assisted
event detection is simply indispensable for the human observer.

The main goal is performing the detection and recognition of objects and the following
reasoning about action, events and behaviour fully automatically. The most important rea-
son for this is that it is prohibitive to align the number of employees to the number of video
sources. The costs for the surveillance of even a small area are simply too high. However,
another reason is that it is anyway impossible for a human to draw his attention to more
than one scene at the same time without missing changes or knowledge about valuable
coherences. Even drastic changes in a single scene can simply go unnoticed which is also
known as change blindness [192, 218]. Humans cannot keep up with their concentration
over a long period of time, moreover man cannot draw his visual attention to all regions
of images equally well and thus selects one coevally discarding others accidentally [98].

From this fact it is easy to see that consistent observation of multiple scenes is im-
possible by using human data processing only if it is not even working with one single
source. Therefore automatic procedures for performing object detection, recognition and
reasoning are necessary and the use of computer vision is justified.

Although the development of algorithms is done almost exclusively for the use on usual
computers, since the invention of so-called Smart Cameras developers also focus on the
deployment of different algorithms on these platforms. In principle a Smart Camera is
a combination of an embedded computer and a video sensor. An embedded system or
embedded computer is defined to be an interconnection of digital and/or analog electron-
ical circuits for a special predefined purpose. It is the design for exactly that purpose
that allows a particular functionality to be fulfilled in a way optimized in terms of power
consumption, reliability, processing speed and production cost. In fact this is the main
difference compared to the principles of a general-purpose computing system which is
not able to perform in that way. Moreover in contrast to software dedicated for general-
purpose computers, specially designed and compiled code is necessary to be run on em-
bedded systems, which is emphasized by the commonly used name firmware for these
programs.

The term embedded means that such a system forms the core of any machinery it
is designed to control or monitor. This general definition applies to all kinds of elec-
tronic devices, from CD players in cars to alarm equipment in private houses. How-
ever, given the term Smart Camera and from the previous definition it becomes clear
that we are talking about a device where the machinery controlled is a video sensor
and the dedicated task to be fulfilled is computer vision. Note, that the nomencla-
ture smart camera does not make any statement about the application area. Smart
cameras can be deployed in buildings to observe entrance areas, for example. In this
case, the motes are static and not moving, which is one field of operation. However,
they can also be deployed in vehicles to help the driver to detect obstacles or haz-
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ards. In this case, the units are mobile and a different type of functionality is neces-
sary.

As already mentioned an embedded system is some type of device which is highly
optimized for a given functionality. Embedded systems can be divided into several sub-
groups which vary in their flexibility from close-to general-purpose computers as Dig-

ital Signal Processors (DSPs) to maximally application specific circuitry like Applica-

tion Specific Integrated Circuits (ASICs). Unfortunately the common advantages like
low production costs, low power consumption and high throughput are dearly bought.
The most limiting factor for the deployment of algorithms is the modality of memory
management. It is easily possible to trade memory consumption versus computing re-
sources on general-purpose computing systems. However, not the availability of mem-
ory, but the lack of a memory management unit and the necessity to manage memory
consumption, memory mapping and swapping by hand, makes well established program-
ming techniques hard to utilize on embedded systems. Moreover, the lack of memory
is a minor problem in one-dimensional signal processing like speech compression, but
it is even a more severe problem in two-dimensional signal processing, i.e. image pro-
cessing, as images need a lot of memory a priori. It is even more important that the
handling of images in algorithms has to be carefully organized to guarantee for good
performance - or to get some algorithm to run at all not even thinking of real-time be-
haviour.

The vast majority of approaches designed for usual general-purpose computers cannot
easily be deployed on the kind of hardware described. This is the consequential outcome of
an algorithm design process where the most limiting factors and parameters of embedded
systems are not taken into account. Though one is not hopefully lost when it comes
to implementing state-of-the-art methods on embedded devices. By keeping an eye on
the most important and impacting factors and analyzing the characteristics of algorithms
many of them can be tailored and suited to the hardware platform of choice. Looking at the
problem from a more philosophical point of view, it is facing and solving the true problems
in the real-world application of algorithms that even make them state-of-the-art. Though
embedded systems are commonly used especially in industrial environments it is essential
that algorithms become practically usable in real-world. Not until implementation issues
are tackled and removed, algorithms can finally make the step from being subject to
scientific invention and research to their application in real-world engineering.

1.2 Object Detection and Recognition

For surveillance purposes the focus of research in computer vision is on three big topics
mainly, object detection, object recognition and object tracking. An example is given in
figure 1.1 where thee basic principles are illustrated. Note, that the interpretation of
events, action or context is also a research topic closely related to those mentioned above.

Indisputably, object detection and object recognition are the most important tasks
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Figure 1.1: This figure illustrates the topics mentioned, object detection and object recognition.
There is an object in this case means the detection of a person (or other types like the menu card,
the glass with peanuts or the cocktails), it’s that type of object, in this case this is a person and it
is Clemens. The interpretation of events, action or context in this case is what Clemens is doing,
he is smoking. Note that tracking would denote, for example, the tracing of Clemens’ head in
consecutive images when he is moving.

and are based on the processing of raw sensor input. For object tracking, it is necessary
to incorporate some additional temporal information. Tracking can also be interpreted as
pulling together several events on a fixed timeline, i.e. several consecutive detections of an
object in consecutive frames. To explicate these in more detail,

• object detection is the task of becoming aware of the presence of a predefined
object in an image and finding its location (typically without perfect segmentation),

• object recognition is the task of determining an object to be from a predefined
category (categorization or generic recognition), or classifying an object to be exactly
the same object as noticed previously (specific recognition), and

• object tracking is the pursuit of an object through consecutive image frames,
collecting information about its position, its direction of movement and/or its ori-
entation.
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In this work we are concerned with the first two groups of methods only, object detection
and object recognition. We assume that when an object is robustly and successfully
detected and recognized in single images, computer vision has succeeded. In the following,
we will not deal with the huge number of existing approaches to object tracking. For an
overview, the reader is referred to the thesis of Michael Grabner [86].

1.3 Problem Statement

A lot of object detection and object recognition algorithms exist, however, varying in
their number of advantages and disadvantages. Only a few approaches deliver promis-
ing results in terms of accuracy, and an even smaller group of approaches has been
proven to be robust and applicable in real-time. Finally the smallest subset of algorithms
fulfills the criteria of robustness, real-time applicability and precision, and additionally
fits onto a platform, featuring only limited amounts of memory and computational re-
sources.

This is the group of algorithms we are concerned with in this thesis. We focus on
statically mounted devices only, which means that the camera is fixed and does not move
around during operation. However, the applicability of the algorithms investigated and
developed is not necessarily limited to this application domain. Smart cameras offer
undisputable benefits in terms of power consumption, the possibility to co-locate the
sensing and the processing task, and the robustness against environmental stress, amongst
others. We want to investigate the current state of the art in object detection and object
recognition from the area of computer vision in the context of smart cameras. Our goal is to
take benefit of recent advances in computer vision research and smart camera development,
and to overcome well-known drawbacks of embedded systems in algorithm design, such as
reduced memory resources. We focus on the investigation of existing approaches and aim
at discovering and declaring general rules for deploying state-of-the-art computer vision
algorithms on existing smart camera setups. In other words, for object detection and
object recognition on an embedded system, algorithms have to be adapted and tailored
to meet real-time constraints and environmental restrictions without significant loss in
robustness and performance. Our intention is to find and define general methods to
achieve this goal, while we reemphasize, that the focus is on computer vision for smart
cameras platforms for surveillance purposes.

Regarding the algorithms from both areas in detail, in the case of object detection
the localization procedure should be fast enough to perform in real-time, taking ad-
vantage of architectural properties and advantages of the dedicated hardware platform.
For object recognition the goal is to achieve high performance in terms of recognition
accuracy. Even more important, operation should perform under real-time constraints
to be applicable in different situations, like reacquisition of objects or information re-
trieval. In both cases, we consider our approaches to be soft real-time systems, which
means that the completion of the task after its deadline is not critical, but should be
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(a) (b) (c)

Figure 1.2: (a) Prototypical smart camera platform. (b) Example images of vehicle detection in
traffic scenarios. (c) Object Recognition given two vehicle images.

avoided1 [126, 141]. In the case of object detection, this means that the detection pro-
cess should perform at frame rate, otherwise frames of the input stream are dropped.
In the case of object recognition, we consider the system to perform in real-time, if
the recognition result for a given input sample can be determined within a time span
of several hundred milliseconds, allowing for recognizing several thousand objects per
hour.

1.4 Contribution

The first major contribution is the investigation of the well-known Viola-Jones algorithm
on DSP-based hardware platforms [250]. A prototypical DSP-based system was chosen,
because DSPs form a large group of embedded processors, offering a great amount of
flexibility and performance in equal shares. Moreover, we focus on the development
of algorithms for usage on existing hardware platforms, rather than on hardware
design, thus choosing a predefined DSP-based architecture as a hardware framework
is reasonable. We are the first to analytically and experimentally investigate the
properties of the Viola-Jones detection algorithm for usage on a prototypical embedded
hardware platform in the context of surveillance. We propose special adaptations of
the algorithm to meet real-time constraints. Moreover, we investigate and discuss the
main problems in using Boosting based detectors on DSP-based systems, to find general
rules for realizing and applying recent visual object detection technology on smart
cameras.

The second major contribution is the analysis and realization of several
state-of-the-art object recognition algorithms for deployment on our DSP-based
hardware system. The DoG keypoint detection algorithm and the SIFT / PCASIFT
descriptors [115, 142] are evaluated with respect to their suitability for DSP based

1In contrast, in a hard real-time system, the result of a task completing after the deadline is considered

useless, and exceeding the time limit might lead to critical system failure.
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hardware setups. Given the properties of these algorithms a number of different
methods to circumvent the problems faced are proposed to better suit the approaches
to the environmental restrictions of a given hardware setup and to allow for
real-time performance. Furthermore, we investigate the properties of the individual
algorithms and discuss some key properties to realize a powerful object recognition
system. We discuss and analyze the tradeoffs, given limited computational and
memory resources on smart cameras on the one hand, and the idea of deploying
moderate-scale object recognition capabilities for autonomous systems on the other
hand.

We show the suitability of our approach on the challenging task of vehicle detection and
recognition on public streets. On the one hand, we will focus on detection accuracy and
real-time capabilities, on the other hand we will also focus on high performance, specific
object recognition given appearance information only. The advantages of our approach are
described in detail, while our algorithm investigations and adaptations primarily focus on
the meeting of real-time constraints. We treat memory consumption as an important issue
during algorithm development and develop methods to get along with restricted resources.
However, we do not discuss all other issues of memory management, like memory mapping
or caching strategies in detail here. We proof our algorithms suitable in the context of
scalability in a, possibly huge, network of smart cameras, rather than on a single unit. In
this respect, we mainly focus on the communication requirements between individual smart
cameras, beside the major aspects of calculation accuracy and real-time performance. We
emphasize, that we do not treat other special issues of sensor networks in detail here, such
as distributed computing or determining communication paths. However, we proof our
approaches suitable to be part of a software framework for sensor networks in surveillance
scenarios.

1.5 Thesis Outline

This thesis is organized as follows: in the next Chapter 2 an introduction to smart cameras
is given. We will list the main aspects of smart camera development and, furthermore,
discuss the main observations and criteria to qualify and classify algorithms suitable for
embedded systems. In Chapter 3 an overview about related work in the area of object
detection and object recognition is given. We will divide the individual approaches into
several groups and discuss their properties, their advantages and drawbacks. The main
two applications in respect of our embedded system are described in Chapters 4 and 5.
In Chapter 4, a detailed discussion of the Viola-Jones object detection approach on DSP-
based embedded platforms is given. In Chapter 5, we propose a powerful object recognition
system for deployment on smart cameras and apply it to the task of vehicle reacquisition.
Finally, some critical and concluding remarks are given in Chapter 6.
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If the automobile had followed the same devel-
opment cycle as the computer, a Rolls-Royce
would today cost $100, get a million miles per
gallon, and explode once a year, killing every-
one inside.

Robert X. Cringely

InfoWorld magazine

Chapter 2

Smart Cameras

S
mart Cameras are devices consisting of an embedded computer, a single or multiple
image sensors, and some type of interface for external communication. However,
the analog or digital video sensor must not necessarily reside on the same circuit

board, but can also be connected over some analog-to-digital converter (A/D converter) or
a frame grabber. Nevertheless for a typical smart camera the video sensor and the main
board are residing in one common housing and a connection is often available through
a dedicated video grabbing device or a special video port of the processing core. The
main task of a smart camera is to perform a given task automatically and autonomously.
Smart cameras offer undisputable advantages in terms of power consumption and physical
size, compared to usual PCs. Moreover, they offer the possibility to co-locate the sensing
and the processing task, they allow the extraction of valuable information at site and
the transmission over low-cost, low-bandwidth communication channels. A qualitative
overview of the most prominent embedded system technologies and their properties is
shown in Figure 2.11. In the following we give a short introduction to the current state-
of-the-art in smart camera research in Section 2.1. An overview about the technology of
embedded systems, followed by a set of smart cameras proposed in the literature is given in
Sections 2.2 and 2.3. In Section 2.4, we describe general aspects of software development
on DSPs. Finally, in Section 2.5 we introduce the TRICam, the DSP based hardware
platform used for our software development throughout this thesis.

2.1 Smart Camera Research

The development topic of smart cameras was founded and formulated in the beginning
of the new millennium as an important part of embedded system research [38, 121, 264].
In fact, smart cameras are pushing the design space in many dimensions and combine
multiple interdisciplinary areas, like VLSI design and hardware/software co-design.

1Note, that this is just a rough map to illustrate the diversity of embedded system technology, and that

the listing of different architectures makes no claim to be complete.

9
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(a) (b)

(c) (d)

Figure 2.1: (a) Qualitative flexibility and integration efficiency tradeoff for different embedded
system technologies. (b) Qualitative unit cost and production volume tradeoff for different embed-
ded system technologies. (c) Qualitative programmability and time-to-market tradeoff for different
embedded system technologies. (d) Qualitative platform reconfigurability and task specific execu-
tion efficiency tradeoff for different embedded system technologies.

There are many reasons for employing embedded technology in smart sensors. To
summarize the most important ones, embedded computers allow for a cost-effective, large
scale deployment of devices, coevally offering robustness against adverse environmental
conditions, low power consumption and the possibility to co-locate the processing and
the sensing task to process data at site. Moreover, special attention is given to the real-
time capability of embedded systems and to an incremental miniaturization of devices.
However, in former times, computational work, i.e. processing data, was done mainly on
servers or computing engines, which were located in areas or rooms with restricted access.
This circumvented the problem of physical attacks on these systems by offenders. Due
to the distributed nature of smart cameras, they are physically accessible to attackers,
which poses a big security issue. Moreover, additional attacks on smart cameras, or
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entire camera networks, are now possible, such as battery or power attacks to drain or
cut the power reservoir of a node, or attacks over wireless communication channels on
all protocol layers to disturb or interrupt inter-node communication. Clearly, all of these
advantages, drawbacks and security issues are subject to ongoing research, together with
the development of suitable concepts for building high performance, small, yet robust
and reliable smart camera platforms. Note, that in the following, we will mainly focus on
embedded technology for usage in smart cameras for surveillance purposes, and will greatly
omit issues of mobile devices, ubiquitous computing or self-configuration of communication
and sensor networks.

The list of applications of smart cameras is diverse, such as the background of de-
velopers working with smart cameras. For a short time now, workshops and conferences
are issued to band together engineers and researches from all different development ar-
eas, which mainly include the hardware community, the image processing and computer
vision community, the sensor network and sensor fusion community and also the machine
learning and artificial intelligence community [67, 68, 106]. A number of different pro-
totypical smart camera setups have been developed, which will be discussed in detail in
Section 2.3. To give a short and not exhaustive list of main research topics and dedicated
applications, one can refer, for example, to gesture recognition [264, 267], smart home
care [118, 260], and all sorts of surveillance applications, like people and vehicle detection,
tracking and counting [11, 58, 184, 188]. Current, and also future trends clearly focus
on issues of collaborative and distributed computing in smart sensor networks, on sen-
sor fusion and on hardware architectures for solving complex algorithmic tasks on high
performance embedded platforms.

2.2 Embedded System Technology

As already mentioned before, smart cameras are based on embedded system technology.
The group of embedded systems is manifold and varies in its amount of flexibility be-
tween each category. The biggest sets are Reduced Instruction Set Computers (RISCs),
Digital Signal Processors (DSPs), Field Programmable Gate Arrays (FPGAs), and Ap-
plication Specific Integrated Circuits (ASICs). Two other groups exist which are sharing
characteristics of embedded systems beside other special properties. These groups are
Microcontrollers, which also include the set of System-on-Chip platforms (SoCs), and the
recently emerging area of Graphics Processing Units (GPUs). A short characterization
of each single domain is given hereafter, followed by notes on general selection criteria.
For a more elaborate introduction to processors and embedded computing, the interested
reader is referred to the book of Wolf [262]. Note that it is not possible to mention all
types of methodologies, design issues, development groups and reference implementations
here, thus we aim at giving a general overview and only focus on aspects relevant for our
own work.
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2.2.1 Reduced Instruction Set Computers (RISC)

The term RISC was introduced to differentiate from the Complex Instruction Set Com-

puter (CISC) architectures. The RISC was introduced in the late 1970s based on several
design principles to create a new architecture, originally to facilitate the use of optimized
compilers for the generation of machine code. The instruction set should contain only
simple instructions, being decodable by the CPU within one clock cycle. Furthermore, the
use of register files and pipelining allows for execution at high frequencies, also factoring
out slow memory accesses. For an early introduction and review of RISC processors, the
reader is referred to the article of Patterson [181].

Main representatives of RISC processors nowadays are the ARM processor family [220],
the MIPS architecture [234] and the PowerPCs. Manufacturers of RISC processors mainly
include Freescale Semiconductors, IBM, AMCC and MIPS Technologies.

2.2.2 Digital Signal Processors (DSPs)

Another big and important group of embedded processors is formed by DSPs. Originally
developed for one-dimensional signal processing tasks in the real-time computing domain
for telecommunications, they are now more and more emerging into the image processing
domain. To allow for fast filtering and folding operations, one important feature of DSPs
was an onboard multiplier, also providing a multiply-accumulate (MAC) instruction. This
is still a common feature on nowadays DSP architectures. Recent DSPs also often in-
clude specialized instructions for more evolved digital signal processing operations, such
as Viterbi en-/decoding for example. Being related closely to general-purpose computing
systems in respect of their programming flexibility, the newer series DSPs are featuring
Very Long Instruction Word (VLIW) and Single-Instruction, Multiple-Data (SIMD) tech-
nology, which means that multiple functional units can be handled concurrently. Software
for DSPs is usually written in a high-level language like C or C++ which makes develop-
ment of applications relatively straight-forward and efficient. Optimization of programs
is done during compilation which means that the developer is only able to influence op-
timization at a moderate level. While DSPs have been developed working mainly in the
fixed point domain for almost two decades, recently DSPs equipped with a Floating Point

Unit (FPU) have become more attractive. However, fixed-point calculation is still the
predominant domain, as more evolved DSP architectures clearly come at a considerably
higher price due to the increased hardware complexity. Needless to say, that the inclusion
of FPUs in DSPs also comes at considerably higher energy consumption and increased
chip area.

First prototypes of DSPs were proposed in the late 70s by Intel and AMI. Later the
principles were refined and the first full-features DSPs were presented by AT&T and NEC
in 1980. A big success was the introduction of the first DSPs from Texas Instruments
which is still holding on. Today TI is the biggest manufacturer of DSPs beside other
producers like Motorola and Analog Devices. The range of pricing for a DSP ranges
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Figure 2.2: Block diagram of the C62x/C67x and the C64x DSP architecture from TI, taken
from TMS320C64x Technical Overview [237].

from a few up to a few hundred dollars. Likewise the band of power consumption of DSPs
ranges from 50mW up to 5W . The variety of DSPs is manifold and special type processors
are available for almost each specific application, thus it is up to the developer make the
right selection. Concerning a very popular group of DSPs especially suitable for video
processing, the TI TMS320C6xxx series a block diagram of the basic processor design is
depicted in Figure 2.2.

2.2.3 Field Programmable Gate Arrays (FPGAs)

Field Programmable Gate Arrays are semiconductor devices which contain a huge number
of logic elements and connections inbetween. The elements are called logic blocks and can
be programmed to perform a logic operation with limited complexity, from simple AND
gates up to full multipliers or even complexer functions. The name field programmable

denotes the possibility to program interconnections and logic blocks after manufacturing
in the field. Many different types of FPGAs exist, which can be chosen according to de-
sign and security issues. FPGAs based on Static Random Access Memory (SRAM) are
programmed at power-on and are booted from some external functionality. Erasable Pro-

grammable Read-Only Memory (EPROM) devices can be programmed multiple times but
is usually programmed during manufacturing. The program can be erased by exposing the
device to ultra-violet light, and can be re-programmed afterwards. Electrically Erasable

Programmable Read-Only Memory (EEPROM) technology based FPGAs can be erased
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and re-programmed electrically which makes the need for ultra-violet light exposure ob-
solete. Fuse and Anti-Fuse based FPGAs are working on opposite electrical principles. In
the first case programming is done by breaking conductive connections and in the latter
case connections are established if the applied current is exceeding a specified limit. The
latter technology is much more common in the world of Integrated Circuits (ICs), however,
FPGAs based on both techniques can be programmed only once.

The programs for FPGAs are usually written in a Hardware Description Language

(HDL) such as ABEL, VHDL or Verilog. Given the description of the desired functionality
a number of steps have to be taken to finally place the functionality on the device. To
speed up this process different development tools exist such as SystemC. An important
feature are the libraries of function blocks and macros that can be used to further speed
up the design of programs. The list of manufacturers of FPGAs contains companies like
Altera, Atmel, Actel and Xilinx among others. FPGAs can be used to create complete
devices such as DSPs or to perform computationally expensive tasks in hardware, such
as Fast-Fourier-Transform (FFT) or video en- and decoding. However, FPGAs are also
mostly used for prototyping ASICs, and as their capabilities and speed increases nowadays
complete SoC outlines can be fabricated on FPGA technology.

2.2.4 Application Specific Integrated Circuits (ASICs)

A group of devices dedicated for high volume production are Application Specific Integrated
Circuits. These devices only contain the components that are very specific and necessary
for performing only one given task. Different design and manufacturing methodologies
exist, ranging from full custom ASIC design to structured ASIC design. The major dif-
ferences are in the usage of predefined macros, cell libraries and intellectual property

(IP) cores. As in FPGA design these predefined modules can be used to speed up the
development process trading against chip area and cost. While in custom ASIC devel-
opment the granularity of development is to define the characteristics of metal layers in
the semiconductor, in structured ASIC design a set of predefined characteristics and their
semiconductor implementation are given in advance (which in turn reduces development
time considerably). At the very high-end structured ASICs are also sometimes referred
as SoCs if complete DSP cores and modules for interface functionality are included in the
design.

The major benefits of ASICs are their asymptotically decreasing cost when manufac-
tured in high numbers, a little increase in speed over FPGAs and a decrease in power
consumption to a minimum. However, the biggest problem with ASICs is their design
and production cycle and the non-recurring engineering costs, which can easily exceed 1
million dollars. Furthermore the static layout causes big problems as a redesign due to
bug fixing is a costly exercise. However, as development tools get better also ASIC de-
sign and development becomes easier. As an example mobile phones are a representative
application for ASICs as the worldwide sale in high volumes and the well-defined task to
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perform easily balances the concerns in manufacturing and design. Producers of ASICs
include Altera, Fujitsu, Infineon or NEC among others.

2.2.5 Graphics Processing Units (GPUs)

Graphics Processing Units are devices especially developed mainly for graphics generation
and visualization. A big drive in this domain is the gaming industry forcing developers and
manufacturers to build faster, more powerful engines for more realistic representations and
higher throughput. The major goal is to generate output that is as realistic as possible.
Clearly, in relation to computer vision the main striving behind this technology is entirely
contrarian as the main task is information generation in the first case and information
extraction in the latter one. However, the consistent progress of these devices and the
introduction of a concept called General Purpose Computation on Graphics Processing

Unit (GPGPU) in 2000 make these devices also usable for data processing and computer
vision. The idea behind GPGPU is to use the highly parallel vector architecture of GPUs
to perform highly parallel procedures on these devices. Clearly this leads to a high increase
in performance coevally leaving more room for other tasks on the main processor. Since
the introduction of the Compute Unified Device Architecture (CUDATM) by NVidia in
2006 and the release of Software Development Kits (SDKs) for writing procedures in
C language, the development of programs for GPUs has gained even more attraction
as before. Needless to say that as a consequence of this invention the development of
application or porting has become a lot easier. For a survey of state-of-the-art in GPGPU
the interested reader is referred to [175].

The currently market dominating manufacturers of GPUs are AMD and NVidia. AMD
is producing the ATI Radeon series and NVidia is pushing his GeForce series of video cards.
Less important for real visually realistic graphics processing are devices manufactured by
Intel mainly integrated as onboard devices. In principle the development of GPUs is
not subject to any restrictions of embedded systems, such as the necessity of low power
consumption, the desired operation under a given range of temperature or the need for
a small form factor. In contrary, GPUs are contradicting almost all characteristics of
embedded technology. They waste a lot of energy, need big fans for cooling and the
ongoing trend is against more powerful and voluminous sizes to deal with even higher
performance. However, GPUs share one important property which is the principle of
pipelining. Data processing is done similar as in DSPs, as pipelining is the magic word
to achieve high throughput and efficient execution. Thus GPUs are called a member of
the embedded system group, even if most of their characteristics state clear contradictions
against embedded system philosophy and though the real membership of GPUs is still
under debate in the embedded system community.
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2.2.6 Microcontrollers and System-on-Chip platforms (SoCs)

Microcontrollers and System-on-Chip platforms form the biggest group of embedded sys-
tems nowadays, being part of almost any electronical device in our environment. Microcon-
trollers are some type of microprocessor, additionally including memory resources for pro-
gram and data storage, timers and external, typically serial, interfaces. Microcontrollers
emphasize the aspects of cost-effectiveness, high integration, low power consumption and
self-sufficiency.

While microcontrollers are single physical packages aimed at performing small-sized
tasks, the term System-on-Chip refers to the integration of an entire system - or all elec-
tronic circuits needed for performing a given application - into one single chip. Usually,
System-on-Chip platforms are combinations of a core processor, a set of interfaces and a
selection of external controllers in one physical package. Many SoCs consist of a General

Purpose Processor (GPP), which can be a RISC processor like an ARM or a PowerPC,
or can also be a x86-based processor like the Intel Celeron M. While the GPP is mainly
included to perform operation system tasks, SoCs mostly contain one or more DSP units
dedicated to the real signal processing tasks. These types of devices are also called Media
Processors.

In the last few years, media processors are becoming more and more important as
they are integrated for active video processing or streaming in many devices of everydays
use. Target applications are present especially in mobile phones, PDAs, handheld video
players, set-top boxes and in automotive engineering. In the context of image processing,
these devices feature special properties and capabilities, such as video en- and decod-
ing support in hardware and limited controlling mechanisms for external devices such as
cameras. Though, on these special platforms only little image processing capabilities are
usually available as they are tailored to meet a special application in a single or a set of
appliances. However, the principles of SoCs make them also appealing to the designers of
Smart Cameras as all necessary features are provided by a SoC solution. Peripherals for
system integration, interfaces for connecting video sources and an extendable architecture
to include more DSP units for even higher signal processing power make this set of devices
a good choice as a base for building a video processing system.

Several manufacturers of Microcontrollers and SoC platforms exist. The biggest ones
are TI, Analog Devices and Intel as a vendor of the XScale driven devices. Further vendors
are AMD which is producer of the Geode processor, Atmel, STMicroelectronics, Freescale
and Cirrus Maverick among others.

2.2.7 Technology Selection Criteria

The architectures described above, especially DSPs, FPGAs and ASICs, have their own
field of application, their own roots and goals and obviously several benefits and disad-
vantages. The choice which technology to choose for a self-made prototypical setup are
manifold, and most times, the final decision is based on a detailed planning process apply-
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ing Hardware-Software Co-Design principles. General rules of thumb to select the right
technology for a dedicated task were proposed in the work of Kisačanin [40]. The main
aspects considered here, are

• the available time for development (Time-To-Market),

• the expected and required funds,

• the targeted area of application, and

• the expected and desired volume of production.

For a relatively small volume of less than 1.000 units per year general-purpose computers
and FPGAs are a good choice considering their price and the reduced need for hardware
dependent development. At the high end of production of more than 100.000 units per
year, the usage of a tightly tailored ASIC is reasonable as the initial development costs
and the need for special developing are notably high, but the deployment in high volumes
justifies adequate investments. In the mid-range DSPs and media processors are good
selections as they form a good trade-off between programming flexibility and the amount
of necessary specific development.

Most smart cameras are based on a combination of various of these devices manufac-
tured in SoC technology because a smart camera implicitly needs peripherals and inter-
faces but also signal processing power delivered by DSPs. Thus in our terminology smart
cameras are SoC platforms as their properties are inherently linked to SoC principles.

2.3 Smart Camera Platforms

Recently a number of Microcontroller and SoC based vision systems have evolved especially
dedicated to the task of image processing. The EyeQ vision platform from Mobileye
is a prototypical smart camera platform with a GPU, a DSP and two CMOS camera
interfaces. Another commercially available vision platform is a PCI board called ”‘Sarnoff
Arcadia I”’ by PyramidVisionTM. An additional indication for the suitability of SoC
concepts for smart camera design is the variety of developments of smart camera platforms
reported in the literature. Among others these include the VISoC [5], the CMUCam3
[197, 198, 199], the WiCa [108, 123], the Cyclops platform [190], the SmartCam platform
[31, 32], the TRICam [10] or the MeshEyeTMsystem [94]. We will outline their design
goals and capabilities in the following. Some of them are depicted in Figure 2.3.

2.3.1 The CMUCam

The Carnegie Mellon University Camera was originally presented in 2002 as a low cost
embedded vision platform being commercially available right from the beginning for a little
more than $100. The first version proposed in 2002 by Rowe, Rosenberg and Nourbakhsh
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(a) (b) (c)

Figure 2.3: (a) The CMUCam3 platform from the Robotics Institute at the Carnegie Mellon
University, taken from [197]. (b) The Wireless Camera (WiCa) from NXP, taken from [3]. (c) The
MeshEyeTMplatform from Stanford University, taken from [94].

was based on three chips mainly, a Omnivision OV6620 CMOS camera sensor, a Ubicom
SX28 microcontroller and a simple level shifter for serial communication [198]. Without
additional logical circuits, the camera sensor was directly connected to the microprocessor,
which was running at 75 MHz and possessed 136 byte of SRAM (!). This was lowering the
potential speed of the system as the read-out of every single pixel has to be synchronized
to the microprocessor. The vision system still was able to run at 16.7 frames per second
on 143x80 pixel images for a simple color blob detection application.

In 2005, the second generation of the platform was presented. One enhancement com-
pared to the original version was the use of a Ubicom SX52 microcontroller still running
at 75 MHz but now offering 262 bytes of SRAM [199]. The major advantage of this design
was the use of an Averlogic AL422B frame buffer with 384k bytes of FIFO memory, which
was used to buffer the incoming frames between the CMOS camera and the micropro-
cessor. Thereby decoupled frame acquisition and processing could be achieved, coevally
allowing for full-frame read-out at once instead of single-pixel read-out. The number of
proposed algorithms was extended to include color statistics calculation and frame differ-
encing beside color blob detection. The power consumption at runtime is about 850mW,
while the price for the platform was about $199.

The third and actual version of the system is available since the beginning of 2007 for
approximately $239 [197]. Now another microcontroller is used, namely a NXP LPC2106
which is a 32-bit 60 MHz ARM7TDMI processor with 64k bytes of RAM. Another big
advantage is the use of a Multimedia Card (MMC) interface which can be used to read and
write files. The overall system consumes between 300 and 500 mW of power, depending on
the operation mode. The development of software can be done using open source programs
and an open source compiler, while all libraries for image compression or convolution are
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released on an open source policy. This allows for easy and cheap development without the
need for expensive commercial compilers and development software. An implementation
of the Viola-Jones algorithm exist, which is able to detect faces at a maximum size of
60x60 pixels in 176x144 pixel images at 1 Hz.

2.3.2 The WiCa

The Wireless Camera was developed at NXP Semiconductors and is a smart camera
platform featuring two connectors which can be used freely to capture from one single
camera or to form a stereo camera setup [108, 123]. In detail, the hardware setup consists
of one or two color cameras, a massively parallel SIMD processor, a microcontroller for
host control, a block of dual-port RAM and a communication module. The cameras
deliver images in VGA resolution of 640x480 pixels. The SIMD processor is a Philips
Xetal IC3D device whose core is a linear array of 320 single RISC processors for low-level
image processing tasks. The ATMEL 8051 microcontroller is dedicated to multiple tasks.
It mainly controls the IC3D processor, communicates with the RISC processor array and
takes care of program flow and video synchronization. The dual-port RAM available on
the platform provides a total of 128k bytes of memory, which is separated into two banks
with a block of 64k bytes each. For communication purposes a Aquis Grain ZigBee module
is included, which is a very small radio system allowing wireless communication within
about 5 m distance and up to 10k bytes per second transfer rate.

Programs to be run on the WiCa platform are written in C++, or rather using an
extended C language (XTC). Depending on the level of the algorithm to perform the
developer has to dedicate the operations to the suitable processor during program design.
Low-level operations like contrast stretching or convolution are dedicated to the massively
parallel Xetal processor, while high level reasoning is dedicated to the DSP processor.
Several algorithms have been proposed for face detection or human gesture analysis where
the main focus is to exploit algorithm level parallelism [108, 266].

2.3.3 The Cyclops

In respect of large sensor networks and energy-aware smart sensors, Rahimi et al. proposed
a highly power-efficient smart vision platform called Cyclops [190]. The camera mote is
mainly based on a CMOS camera unit, a microcontroller unit, a Complex Programmable

Logic Device (CPLD), an external SRAM memory block and flash memory. The camera
module is a 352x288 resolution ADCM-1700 CMOS camera from Agilent Technology and
can be configured to deliver 8-bit grayscale, 16-bit color or 24-bit color images. The
microcontroller unit is a ATMEL ATmega128L running at 7.37 MHz, which offers 4k
bytes of internal SRAM memory and is extended to 64k bytes total memory on the external
SRAM block. The processor is mainly used to time and coordinate external and internal
events and interrupts. The Xilinx XC2C256 CoolRunner CPLD serves as a frame grabber
which can fulfill the high demands on fast data transfer and address generation.
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The CPLD can furthermore be used to perform restricted operations at capture time
which are based on a set of available libraries. These libraries mainly include operations on
images and matrices respectively, like addition, subtraction, scaling, thresholding, Sobel
filtering, histogram and statistics calculation. More advanced libraries include functions
for background modeling and a set of methods for coordinate conversion between world
and an image coordinate systems.

Two applications are proposed to proof the suitability of the platform, object detection
and hand gesture recognition. The object detection algorithm is based on background
modeling and performs at about 4 frames per second on 128x128 pixel images. The
gesture recognition algorithm is based on the matching of orientation histograms and
can differentiate 5 different gestures from the American Sign Language (ASL) at about 2
frames per second and 92 % of recognition rate. The power dissipation of the platform
is dependent on the operation mode. The platform is designed to work in larger sensor
networks, thus it is highly power-aware and energy consumption is in the range of a few
mW.

2.3.4 The SmartCam

The SmartCam is a low-power, high-performance embedded vision system mainly consist-
ing of a set of individual components [31, 32]. The prototype is based on an Intel IXDP425
development board equipped with a XScale network processor running at 533 MHz. The
board features 256M bytes of RAM and four PCI slots, an on-chip ethernet connection and
multiple serial ports amongst others. The sensor module is a Kodak Eastman monochrome
CMOS camera which delivers images up to VGA resolution at 30 frames per second and
is connected via a FIFO ordered memory. For the main processing task, each PCI slot
can host an ATEME Network Video Development Kit (NVDK) board which consists of
264MB of memory and TI TMS320C6416 DSPs running at 1 GHz. Communication chan-
nels with other smart cameras, external devices or hosts can be established using wired
ethernet, IEEE 802.11 wireless LAN or wireless GPS/GPRS radio.

The plausibility of the concept was demonstrated on a vehicle detection and tracking
application for tunnel safety [32, 33]. However, the focus of current research is on tracking
in multi-camera networks [187], communication, distributed computing and distributed
task allocation.

2.3.5 The MeshEyeTM

The MeshEyeTMplatform was proposed as a single node for larger distributed
smart camera networks [94]. Developed at Stanford University, the system is
especially dedicated to the area of surveillance and consists of a low-resolution
stereo camera setup and a single high-resolution color camera. The main platform
can host up to 8 low-resolution imagers, however, the prototype contains only two
30x30 pixel optical mouse sensors and one 640x480 VGA resolution color sensor.
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The main processing core is an Atmel AT91SAM7S microcontroller which is a
ARM7TDMI 32-bit RISC processor running at 55 MHz. Similar to the CMUCam3
platform the system contains a MMC/SD card interface allowing for easy memory
expansion. Another important feature is the use of a TI CC2420 2.4 GHz IEEE
802.15.4/ZigBee-ready RF transceiver to connect the mote to other notes in a larger
network.

The main task of the camera mote is for object detection and tracking in surveillance
applications. To perform this task both low-resolution imagers perform a motion estima-
tion step based on a background model and producing difference images. The template
of a moving area in one imager is sent to the other imager to estimate the distance of
an object by stereo matching. This distance estimation is rather limited to a few meters
due to the relatively small baseline in the current prototype, however, making the setup
still suitable for indoor and limited outdoor usage. The detection of an object triggers the
acquisition of a high quality color image using the high-resolution sensor, while the rough
Region of Interest RoI information is already available from the former stereo-matching
step. Additional recognition algorithms may finally be applied to the high resolution image
of the object detected.

The major focus of the MeshEyeTMdevelopment is energy awareness and the intention
to extend the principles to larger networks of smart cameras. To allow for autonomous
battery powered functionality, parameters can be tuned for highly energy efficient oper-
ation and to allow for independent processing from a few hours up to a range of a few
weeks. As there is currently no intention to include high-performance computing units
like DSPs onto the platform, future development of vision algorithms will have to focus
on tailoring the methods to meet the computational resources of the currently available
RISC processor.

2.3.6 Summary

Smart cameras form a relatively young field of development. Hence it is not surprising, that
there exist only a few platforms, which vary strongly in their properties and features. Some
of the systems focus on low energy consumption, while others offer high computational
resources, coevally requiring a lot of power. Finding the right and meaningful setup and
configuration is matter to ongoing research. However, one can summarize that, in general,
smart cameras are platforms with

• one or multiple video sensors, which are growing steadily in their resolution,

• a microcontroller, which is performing low-level operation system tasks,

• memory resources and a high performance computational engine, which is a DSP in
the majority of cases, and

• some type of communication module, which is mostly wired or wireless ethernet.
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Although a change in the dimension of the individual parts is to be expected, e.g . the
overall size of platforms and the performance of the single components, we can state
that the general issues of smart cameras will remain the same in the foreseeable future.
Compared to usual computers, many embedded systems are already competitive - or
even superior - in terms of computational power and memory resources. Coevally, they
share the relevant properties of embedded hardware, like low power consumption or cost-
effectiveness. Nevertheless, the main problems are the missing of memory management
units and the lack of powerful tools, which allow for efficient programming and fully
exploiting the benefits of embedded hardware. Thus it is of major importance to focus
on hardware related development of algorithms, which allows for compensation of these
drawbacks of embedded hardware compared to standard computers.

2.4 Aspects of Software Development on DSPs

Different design methodologies have been proposed in the literature for computer systems,
from covering solely the software or the hardware design process, up to defining highly
interrelated co-design processes [262, 263]. In simple terms, there are two ways of hard-
ware related algorithm development to solve a given task. The first one is the classical
way of development. Given a fixed hardware setup, a solution is acquired on common
PCs, initially neglecting the special properties of the target platform. Then, the solution
is tailored and modified, until it can be ported onto the target hardware, meeting all un-
derlying restrictions and requirements. The second way of development is to focus on the
suitability of the target platform for special algorithmic operations, coevally considering
properties of software algorithms, and to compile an overall solution. This way of develop-
ment is also known as Hardware-Software Co-Design, which has become a very important
research topic in the last years [151, 263].

Clearly, both approaches have advantages and drawbacks, but are also aiming at dif-
ferent objectives. In the first case existing algorithms are ported onto existing hardware,
while in the latter case, the goal is to iteratively design and develop an approach consider-
ing both hardware and software concurrently. Usually, approaches of the first kind deliver
results with a higher accuracy, while they cannot take much benefit of the underlying
hardware2. This mainly results from the lack of powerful compilers and tools, which are
able to map the existing algorithm onto existing hardware efficiently. Approaches of the
second kind are usually much more performant in terms of speed, as they are much more
optimized for the advantages of the target hardware, but they are usually less competitive
in terms of accuracy.

Clearly, for DSP based systems the usual way of development is the first one, as it is
the easier and faster way due to advanced tools and helpers. The success of an algorith-
mic approach for a given application depends on two things, the principal suitability of

2In this context, ”accuracy” means the algorithm precision or performance in terms of exactness.
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an algorithm to perform a given task, and the suitability and portability of the chosen
approach onto the DSP based platform. For developers the big challenge is to sort out
those algorithms that deliver high performance in terms of accuracy, and are coevally
suitable to run under restricted conditions prevalent on the platform. When this group of
algorithms is found, the challenge for the developer is to adapt these algorithms that have
proven to be successful on a usual computer such that they perform almost equally well
on the platform of choice. Moreover, the adaptations should make the algorithms take
benefit of special hardware features like pipelining or VLIW capabilities.

In the following we shortly outline the most important restrictions and also note some
general ways to circumvent bottlenecks. We will place general DSP algorithm design rules
and also comment on special properties of the TI TMS320C64xx family that are very
useful for speeding up suitable algorithmic parts (a block diagram of the DSP unit is
depicted in Figure 2.4). In this context, we address the topic of memory management and
discuss the main aspects of parallel execution mechanisms and data processing, which are
of special relevance due to the parallel architecture of DSPs. Hereafter, we will shortly
address the topic of fixed point arithmetic and discuss advantages and drawbacks. Finally
we will note some aspects, specific to software optimization for TI DSPs, and comment
on possible modifications to source code, to facilitate software optimization.

2.4.1 Memory Management

The amount of available memory on embedded systems is a major concern. However, due
to the use of flash memory and the advances in memory manufacturing, the limitations
concerning ”slow” memory have become less severe recently, but the lack of ”fast” memory
available is still prevalent. This mainly results from the big difference in manufacturing
cost of fast SRAM memory, usually used as cache memory, compared to slow flash or
DRAM memory chips installed on external banks. As a consequence, now it is possible to
temporarily store a larger amount of data or intermediate results, which generally makes
algorithm implementation easier. However, the major considerations on clever memory
usage for efficient use of computational power remain the same.

Also memory management strategies for software development on DSP-based systems
is a complex topic. Murthy and Bhattacharyya recently published a book dealing with
efficient methods for software synthesis [164]. Considerations about memory consumption
of algorithms are important aspects in multiple areas of software development for embed-
ded systems. Here we will discuss only those more extensively that are somehow relevant
to our work, and leave a detailed discussion of others to the appropriate literature.

2.4.1.1 Prerequisites and Platform Related Issues

The TI TMS320C6414 DSP shares 1024k bytes of internal SRAM memory. Usually a
small part of this memory is reserved to hold the program code, which essentially means
the algorithm executable. The remaining rest of the block is assigned as data memory.
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Figure 2.4: Texas Instruments TMS320C64x DSP block diagram. Taken from TI
TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (spru732.pdf). Note: The
instruction dispatch unit has advanced instruction packing.

Access to this memory is very fast and can be done within one clock cycle. Furthermore,
linear blocks of memory can be accessed using special data processing techniques that are
discussed later. For now, note that it’s advantageous to align data linearly in memory if
possible because also the corresponding addresses increase linearly. The additional amount
of external memory is a single block of 16M bytes of SDRAM on a single bank in our case.
Fetching data from this source is considerably slower, typically it takes between 50 and
100 clock cycles for reading or writing a 32-bit word. Without loss of generality one can
state that computation on data residing in external memory can not be done efficiently on
DSPs using the current state-of-the-art in hardware architecture. Comparing the memory
structure of a DSP and a usual computer in terms of access time, the equivalents are
the internal memory of the DSP and the working memory of the computer, the external
memory of the DSP and the hard disk drive of the computer respectively. Needless to say
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that exchanging data between the working memory and a hard disk, or even a magnetic
drive, is terribly slow.

2.4.1.2 Operating System Memory Management

Usually there is no operating system functionality available on the DSP except the devel-
oper incorporates one explicitly. For example, the DSP/BIOS Real-Time Kernel support
from TI can be included for the TMS320C6x DSP series. The missing of an operating
system essentially means, that noone is managing the memory for us concerning block allo-
cation, fragmentation or swapping between higher-order and lower-order memory ranges.
In fact, automatic memory management is one good reason to use a Real-Time Operating

System (RTOS), such as ”DSPnano RTOS” or ”Unison DSP RTOS” for example [232].
However, since we are working without these goodies, we can control memory allocation on
a very abstract level only. In fact, we can only decide upon placing a memory block in the
internal or the external memory area, and if the block is aligned to a word or double-word
boundary, or if it is not aligned at all. Needless to say, that we also have to manage the
exchange of data between external memory banks and the internal memory resources of
the DSP ourselves.

2.4.1.3 Caching and Memory Mapping

The term cache is mainly used to refer to any storage managed to take advantage of
locality of access [182]. This is a general definition and not only applies to processors, but
also to other computer hardware like hard disks, for example. In the context of processors,
a cache is a small portion of memory which can be accessed by the CPU rapidly. It is used
to store duplicate values which are stored elsewhere and are expensive to fetch, or were
computed earlier and are expensive to recompute (compared to reading them from the
cache). The CPU can store frequently used data and rapidly access it, if it is located in
the cache, which is called a cache hit. If requested data is not located in the cache, a cache

miss happens and the data has to be fetched from other memory areas and is inserted
into the cache. Because memory stalls due to cache misses are an important issue and
usually waste a large portion of CPU performance (i.e. stalling the CPU for a considerable
number of cycles), it is advisable to use a clever caching strategy. A lot of attention was
given to cache design in general-purpose computers, and many issues directly translate to
embedded system design. Because of the special interaction of software and hardware in
embedded system design, caching has also received extra attention to allow for optimized
performance. The main influential factor for using a cache is the chosen size to hold
temporary values. A too small, as well as a too large cache can have a negative effect on
system performance [262]. However, in our work we did not investigate aspects of caching
for increased system performance.

Memory mapping is a term used for different methods, but mainly refers the projection
of the memory space and registers of one device into the address range of some other
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device [262]. For example, memory-mapped I/O refers to the communication of CPUs
and external devices by reading from and writing to the registers of a device, which are
directly linked to areas of the CPU’s addressable space. In contrast, a memory-mapped file
refers to a piece of virtual memory, which is directly corresponding to some file or file-like
resource, like a shared memory object for example. This is a mechanism especially used in
operating systems for assigning a virtual memory area to individual applications, threads
or tasks. Memory mapping is also used to make external memory banks accessible and
treatable like internal memory resources of a CPU by simply assigning them to addressable
space of a CPU. In our case, the external memory bank is mapped to a higher range of
addresses of our DSP.

2.4.1.4 Direct Memory Access (DMA)

To overcome the bottleneck of slow memory access, the use of DMA data transfer is
encouraged to keep the processor busy as steadily as possible. DMA is a technique whereby
data can be transferred from or to the processor’s memory without the involvement of the
processor itself, and is typically used to provide improved performance for input/output
devices. A separate DMA controller is necessary to do this, which can be an integrated
part of a DSP chip or be implemented using external hardware [128]. Using DMA transfer
essentially means, that the DMA unit is autonomously and continuously swapping blocks
of data between the external and the internal memory, while the CPU is performing certain
operations on the data. Note that DMA transfer only works on linear data blocks of a
reasonable size as each transfer is preceded by a setup stage. The time for setting up a
transfer is in the order of 20 to 40 clock cycles and has to be added to the amount of time
needed for the effective data transmission, thus the use of DMA is only meaningful for
data blocks of a certain size. Using this memory swapping technique, the CPU itself can
be kept from stalling because a continuous input data stream is provided. This ensures a
considerable improvement in computational efficiency and throughput.

DMA transfer is only possible between double-word aligned blocks. Without using a
memory management unit, there is no support for automatic memory swapping. Con-
sequently, we have to make sure that we schedule every memory allocation, deallocation
and intermediate transfer ourselves. This also means that we have to place commands
for any memory related operation in our program code wherever needed. Blocking state-
ments are used to check if a transfer has completed and to synchronize the algorithm
flow again. Although performing this type of memory management seems to be an easy
task at first glance, it has a major impact on program design. Effectively, these type of
memory exchange function introduce asynchronous behaviour into an otherwise serial and
synchronous program flow. When handled without caution, this can introduce various
types of hazards, like reading from or writing to uninitialized memory cells. It can at least
cause undesired CPU stalls if data is not available in time, thus it is important to analyze
these issues during programming.
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2.4.1.5 Compiler Optimization for Code Size

Modern compilers allow to trade performance versus code size when building executable
machine code. This is important in the aspect of pipelined architectures, because compilers
usually aim at executing a maximum number of operations in parallel and try to organize
code to be maximally efficient in terms of speed. However, issuing too many parallel
instructions can swell code size, overrunning the available system memory. One example
is the unrolling of inner loops to allow for increased parallelism, which is a feature of
many compilers that can be allowed or disallowed at compile time. For example, the
compiler from TI, which was also used for building our algorithms, gives the developer the
possibility to profile code and optimize for speed, code size or both. In our development,
we only instructed the compiler to optimize our code for speed. We did not investigate
special compile options concerning loop unrolling and minimizing code size.

2.4.2 Parallel Execution Mechanisms

DSPs are devices highly optimized for repeated computations on large datablocks. Due
to their composition of multiple data paths and the multiple ALUs and multiplier units
respectively, it is possible to perform multiple operations within one clock cycle. As a
consequence, a high level of parallelism can be achieved on all levels of operation, while
it is on the programmer to exhaust these resources best possible. In the following, we
discuss various ways that embedded processors, mainly referring to DSPs in our case,
perform operations in parallel. For a more technical and in-depth discussion, refer to the
book of Wolf [262]. Note that we follow a rather raw structure and most mechanisms are
inherently related to each other in modern embedded processors.

2.4.2.1 Very Long Instruction Word (VLIW) Processors

The TI TMS320C64xx DSPs contain a total of six ALUs and two multipliers in two
data paths, as can be seen in Figure 2.4. Up to eight 32-bit instructions per cycle can
be performed, using the 64 general-purpose 32-bit registers available. This is possible
through VLIW technology and a very efficient C/C++ compiler. On general-purpose,
superscalar processors, operations are assigned dynamically to functional units at
runtime. In contrast, a VLIW-aware compiler for DSPs determines if operations can
(and should) be executed in parallel and packs these instructions into a Very Long

Instruction Word at compile time. Thus the CPU fetches and decodes the VLIW
and assigns the operations to the dedicated units. Special care has to be taken in
program design to pass information about parallelizable operations to the compiler
(and enable the compiler to see data hazards or other conflicts). In other words, VLIW
are mainly used in applications with a great deal of data parallelism. However, the
major benefit of using VLIW technology is rather obvious. A high degree of freedom
is offered to the programmer already during writing of an algorithm. While the
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compiler does its best to optimize for speed, the programmer can check at compile
time if the algorithm is executed maximally efficient, or if additional optimization is
necessary.

2.4.2.2 Single-Instruction, Multiple-Data (SIMD)

From the origin of DSP hardware development, special attention was directed at maxi-
mum performance of these devices for Multiply-Accumulate (MAC) operations, as these
operations are the main content of filtering. The ALUs and multiplier units can be used
separably within a single clock cycle, which means that additions and multiplications can
be performed in parallel concurrently. Of special importance is the fact that also data of
different bit-width can be used, which is also known as subword parallelism. The ALUs
can be either used in normal mode, or can be split into smaller units by breaking the carry
chain. In doing so, each subword can operate on independent data, and the same instruc-
tion is performed on several data values simultaneously. For example, for image processing
it is important that each multiplier, as the functional unit with the highest complexity, can
perform either two 16×16-bit multiplications, or even four 8×8-bit multiplications within
one cycle. In other words, in 8-bit grayscale imagery, multiplications on up to 8 pixels
can be performed simultaneously, which results in a maximum of performance. Needless
to say that, vice versa, the algorithms especially suited for DSPs are filter-based ones, or
algorithms that can be rewritten to behave like such.

2.4.2.3 Data Parallelism Issues

Apart from hardware related parallelism, considering possible parallelism on the data level
has special relevance if it seems reasonable to the designer. Moreover, if memory usage
is strictly limited, or if more than one DSP is available for processing, partitioning and
restructuring an algorithm by hand is an option. The main reason to consider splitting
algorithms into multiple blocks which can be executed in parallel, is the lack of powerful
compilers, which are able to detect parallelizable operation on blocks of data at a larger
scale. In general, compilers can already be configured to operate at different levels, from
being very conservative concerning data dependencies to being very liberal. Detecting data
hazards on the one hand, or data independence on the other hand, has special relevance
to the design of modern compilers [4]. Nevertheless, compilers are usually working with a
relatively small stack (compared to the total number of lines of code in an entire algorithm)
and are not able to detect data independency in complexer algorithms at a larger scope. On
this account, it might be favorable for the designer to balance this drawback of compilers.
This idea becomes immediately clear when looking at two examples from the area of image
processing:

• Partitioning of large images into smaller parts can be a very helpful possibility. For
example, if two DSPs are available and the image is too large to fit into their internal
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memory, the image can divided into small, overlapping parts, that can be dedicated
to each DSP and might be processed independently. An inevitable prerequisite is
that the operations to perform on one tile do not rely on any intermediate processing
steps or results of the other. Moreover, solutions derived in the overlapping image
areas have to be treated and combined in a special way.

• Independent operations, such as filtering or transformations, can be performed in
parallel and independently, as long as their individual inputs and results are not
related to each other. For example, for surface analysis in an industrial application,
a set of Gabor filter responses might be calculated from one single image to capture
the variation in texture. If multiple CPUs are available there is no need to line
up all filtering operations sequentially, but the filter responses can be calculated in
parallel concurrently. This can result in a speedup in the order of the number of
computational units available

Applying the methodology of algorithm partitioning by hand is exceptionally dependent
on the algorithm to perform and has to be considered occasionally. However, the direct
need of such programming techniques only becomes important if the hardware is giving you
the necessity and the possibility to draw a significant benefit through rewriting algorithms
in such a way.

2.4.3 Pipelining

Pipelining is a special type of parallelism, but also relys on several other aspects of hard-
ware design and is thus treated and described separately here. An extensive introduction
to various sorts of pipelining can be found in the books of Hennessy and Patterson [95, 182].

Processing a machine operation on a CPU usually happens in three stages, namely
instruction fetching, decoding and executing. Obviously the order of these stages can
not be changed and has to be handled sequentially. However, pipelining is the key to
remove the restriction that multiple machine operations also have to be processed fully
serially, which is also known as instruction pipelining and is a key technology used today
to build fast CPUs (irrespective of the number of functional units available in a CPU).
On the DSP four phases for fetching an instruction have to be passed, namely Address

Generation, Address Sending, Access Ready Waiting and Fetch Packet Receiption. Two
decoding phases exist namely Instruction Dispatching and Instruction Decoding, and up
to five executing phases exist, whose necessity is dependent on the instruction to perform,
and which are just named Execute 1-5 here for simplicity. Without pipelining, for each
machine operation these 11 phases have to be performed sequentially and each phase is only
occuring once in 11 cycles (and the associated hardware is idle for 10 cycles respectively).
In simple terms, pipelining denotes the processing of multiple operations in parallel, such
that the hardware affiliated with the 11 phases is used without stalling and interruption.
An illustrative example is shown in Figure 2.5, where the stages and phases are depicted
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(a)

(b)

(c)

Figure 2.5: (a) The stages and phases of operation handling on the TI TMS320C64x DSP. The
instruction dependent execution stages are framed with dashed lines. (b) Serial processing of
stages and phases. Note that in this illustration an instruction needing only one execution phase
is assumed. (c) Pipelined processing of multiple operations. Again an instruction taking only one
execution phase is assumed.

in (a), together with an example of sequential and pipelined organization of multiple
operations in (b) and (c) respectively. Intuitively speaking, in case (b) a result is generated
every 7 cycles, while in case (c) calculating the first result also takes 7 cycles, but then a
new result is available every subsequent cycle.

An elaborate discussion of pipelining is far beyond the scope of this section, but it is
important to note that pipeline scheduling is done during compile time. This is relevant
because it is, once again, up to the programmer to organize the program flow in such a
way that the compiler can transform it into efficient code. From the programmers point
of view, obviously a single loop, which contains a small block of operations to work on a
larger amount of data, is suitable for pipelining, which is also known as software pipelining

[7, 127]. Several problems are likely to occur which complicate the implementation of
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algorithms, especially three types of hazards, namely data hazards, structural hazards

and control hazards. In the first case data is needed as operands for a calculation, but
depends on previous calculations that have not been performed yet. Structural hazards
refer to conflicts, because more than one operation needs access to one and the same
functional unit at the same time - which naturally is not possible. Lastly, control hazards
are problems that are caused by events or unfavorable program flow which takes the
current pipeline content ad absurdum. Usually the compiler is able to work around these
issues, often finding a solution to the pipelining problem that is a good, but suboptimal
one. However, further optimization is often possible if the programmer passes additional
information about the data to the compiler using special keywords and macros. Note, that
this is especially important for VLIW architectures for efficient scheduling of operations
to multiple functional units [127]. Warnings are issued if it is not possible for the compiler
to figure out, which order of operations is valid and is coevally the most efficient one.
Moreover, pipelining will be simply omitted if it is not safe to use it, for example, if
branching conditions within the program flow might lead to undesired behaviour. In
fact, the compiler will always work conservatively and make sure, that a program can be
executed safely, even if this means that the potential computational capabilities of the
DSP are not fully exhausted.

To use pipelining capabilities of a DSP in an efficient way, the programmer may need
to reconsider an existing implementation. In image processing often two nested loops are
used, mostly to perform operations in horizontal and vertical direction respectively. The
compiler can pipeline a single loop only, which is the inner one clearly. Assume, that the
operations to be performed can be pipelined and that it is possible to choose between
storing an image in column- or row-first order. It immediately becomes clear that the first
step should be to place the loop working along the larger image dimension as the inner
loop, because pipelining occurs less frequently, but each pipeline is performing longer and
producing more results. Clearly this option reduces the amount of time needed to fill and
empty pipelines in the first place. If it is possible, for example for filtering applications, the
programmer may also consider collapsing two loops into a larger single loop. This ends up
with a single pass over a linearly stored image, where a single pipeline is sufficient. If this
is possible, this might be the most effective way. However, it is important that side effects
of such an implementation are considered in subsequent calculations, as results might be
invalid at the image boundaries, for example.

In general, it is sufficient for the programmer to write functional code which is using as
little conditional statements as possible. Branches are the main source of pipeline stalls,
though they should be avoided in loops if possible. Normally, if this aspect is considered,
one can rely on the compiler to transform the program into efficient code without the need
for additional optimization by hand.
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2.4.4 Fixed Point Calculation

Historically, DSPs have been developed mainly for working on fixed point numbers. The
inclusion of FPUs comes at a considerably higher price, a larger amount of chip area
needed and considerably higher circuit complexity. As a result, the usage of floating point
capable DSPs is highly constrained to applications where the use of FPUs is reasonable
and necessary. On fixed point DSPs it is still possible to perform operations on floating
point numbers, but they are all emulated in software and there is no dedicated hardware
support for it. Thus program code written using floating point arithmetic is terribly slow
and should only be used if it is really necessary.

In fact the invention of the FPU on general purpose computers in the 80s has gen-
erally led to a replacement of fixed point by floating point arithmetic during algorithm
design. The main reason for this is the ease of algorithm development using floating point
numbers, without the need for the designer to apply scaling factors and other techniques
to prevent arithmetic overflow. On the one hand, this makes life a lot easier in algorithm
design, implementation and testing on general purpose computers. On the other hand, it
clearly makes some type of reverse engineering necessary if an algorithm is to be placed
on hardware with such striking limitations.

Floating-point DSP processors are generally easy to program and use, but are usually
more expensive and have higher power consumption. As a result, low-cost, high-volume
embedded applications, such as cellular phones, hard disk drives, modems, appliance con-
trol, audio and video players, or digital cameras, use fixed-point processors. Usually, using
fixed-point arithmetic in devices results in faster processing, is cheaper in terms of chip
area and production cost, and is also more efficient in terms of power consumption. For a
practical and in-depth discussion of applications and implementations on DSPs, including
a review of the aspects of fixed-point and floating-point arithmetic, the interested reader
is referred to the book of Kuo, Lee and Tian [126]. For a more detailed discussion on float-
ing point to fixed point conversion rules, Randy Yates has written two helpful tutorials
[273, 274].

Having some practice in working with fixed-point numbers, the special suitability of
DSP hardware with SIMD support becomes self-evident. Using a 16-bit or 8-bit fixed point
number representation, the ALUs and multiplier units can perform multiple operations
within one CPU cycle. For example, for DSPs manufactured by TI, this is called packed

data processing. It is rather obvious, that in this case the DSP has major advantages
over general purpose CPUs, because the data throughput is considerably higher. This is
also the major reason why algorithms for fixed point DSPs should be designed to take
advantage of this feature, because tremendous speedups can be achieved in comparison
to general purpose computing. Moreover, images are typically represented with 8-bit
grayscale depth, or 16-bit or 24-bit color depth. In most cases, color is not necessary for
performing a given task, thus the 8-bit grayscale format can be used, which is an ideal
input format for this type of fixed-point DSPs.
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2.4.5 Software Optimization

When writing computer programs, the transformation of source code into maximally effi-
cient machine code for a given hardware platform is desired. However, after initial devel-
opment, often additional optimization is necessary to meet environmental requirements.
Considering the use of DMA, VLIW parallelism, pipelining and fixed-point math already
during algorithm design, holds a big source of algorithm-level optimization and places
general design rules independent of the specific DSP type. The major goal in software op-
timization is to improve the implementation in terms of memory usage or speed, without
making further changes on the algorithmic level, but taking increased advantage of vendor
specific optimization options. These ways of software optimization in the context of the
TI DSPs are discussed in the following.

2.4.5.1 Programming Language

For programming on TI DSPs, the C and/or C++ programming language can be chosen.
The decision, whether to use one or the other for programming, mainly depends on the
scale of a specific application and has to be taken as the case arises. But a good deal
more, the principal question poses, whether to use a language offering only very raw
structuring capabilities, or to utilize a more elaborate program language, offering features
like inheritance, virtual functions, additional datatypes, and so on. However, books exist
dealing with this principle question and discussion boards are full of this topic, arguing
about pros and contras of both. A comparison between C and C++ for DSP programming
can be found in [256].

There are at least two good reasons to choose C over C++. First, compilers and
optimizers on the TI DSPs are more advanced in building machine code from C source
code, rather than from C++ sources. This mainly results from the, possibly unneeded,
overhead of the C++ language itself, and from the longer tradition of the C language. Sec-
ond, a lot of features of C++ are restricted, not allowed or not available anyway. Among
those unsupported features are virtual and multiple inheritance, exception handling, com-
plete standard library support and only limited support for templates. The main reason
for these functionalities not being supported is their negative influence on either code
size, runtime performance, or even on both. For example, exception handling, as well
as polymorphism tasks, are mostly performed at run-time. In contrast, the assignment
of a class does not differ significantly from allocating a struct, and determining private
and public members of a class can be done at compile time. Nevertheless, many features
allowed in C++ have more influence on programming style than they have on program
flow or program behaviour. Furthermore, various things can also be implemented in C
with some programming skills, such that possible advantages of C++ over C become even
less influential.
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2.4.5.2 Compiler Optimization

The C/C++ compiler from Texas Instruments for the TMS320C6x DSPs includes a very
efficient optimizer. It mainly optimizes the source code for the register and pipeline usage
of the underlying DSP. This is mainly accomplished by automatic allocation of variables to
registers, rearrangement of statements, expressions and declarations, and by simplifying
loop structures for pipelining. Special configuration can be set to optimize either for speed
or code size. Moreover the compiler can be instructed to compile all sources as single large
block of code, meaning that it can perform program level optimization, rather than file level

optimization. This allows the compiler to see variables and data dependencies across file
boundaries and allows for more effective software pipelining and loop scheduling. Several
methods exist to further improve the efficiency of the compiler and the optimizer:

• Inline functions: Small functions can be marked using the inline keyword. In
doing so, the function itself rather than its address is copied to each location it is
used elsewhere in the program. On the one hand, this means that the compiler can
optimize the code section, as it now sees the entire functionality rather than some
call to a function. On the other hand the code is duplicated on the execution stack,
which means that also the code size is increased.

• Globals and Constants: Globally declared variables can be used to avoid the
computationally intensive parameter passing process in function calls. Definitions
of parameters or functions as const helps the compiler in optimization and increases
code readability.

• Register Variables: Using the register keyword forces the compiler to prefer these
variables for placement in a register rather than on the program stack. This can
significantly increase performance, as priority to variables can be assigned manually
and their intended frequent use is signalized to the compiler.

• Loop Unrolling: To help the compiler in optimization, the programmer can per-
form simple tasks like loop fission or loop fusion. Loop fission describes the splitting
of single, large loops into multiple small loops. This mainly helps the compiler to
increase instruction level parallelism. In contrast, loop fusion is the combination of
multiple loops into a single, large loop, which decreases loop overhead and reduces
the overhead of copying data to internal memory. By using special keywords and
macros, the programmer can pass additional information about the intended num-
ber of runs through loops to the compiler. This can help the compiler to perform
modulo-scheduling of loops, unrolling and optimize for code size and/or speed. One
important requirement is that the loops are free of function calls, whereto also calls
to memory allocation and deallocation belong.

• Intrinsics and Packed Data Processing: Intrinsics are highly optimized func-
tions for C/C++, that are written in assembly language. They allow for maxi-
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mally efficient use of DSP and vendor-specific hardware features on the programming
language level. Closely related to intrinsics are Packed Data Processing methods.
Packed data processing is a functionality that allows the programmer to take ad-
vantage of the SIMD ability of the underlying hardware by using special intrinsics,
and to encourage parallelism. An explanation, how to use this functionality in the
context of image processing is given in the book of Qureshi [189].

2.4.5.3 Lookup Tables, Iterative Methods and Memory Allocation

A lot of mathematical functions, such as the sine, cosine or exponential function, are
computationally expensive to compute, especially if they are used frequently. Lookup
tables for frequently needed function values can be used, if memory resources are available
and the computational effort of calculating a single value is significant. An other possibility
is the use of iterative methods to approximate the exact values. Iterating can be stopped,
if the results seems to be accurate enough. In this respect, for example using Newtons

method to calculate the square root of a number can be a reasonable choice, if taking the
square root of numbers is a frequently used operation in an algorithm [36].

Another possibility to speed up algorithms is to avoid dynamic memory allocation.
Static memory allocation should be preferred over dynamic allocation, if the amount of
memory needed is known in advance, and is also available for the duration it is needed.

2.4.5.4 Linear Assembly and Hand-Written Assembly Code

Texas Instruments has used the synonym linear assembly for a more straight-forward form
of writing assembly code for the C6x DSPs. Programming in linear assembly is simpler
than programming in ordinary assembly, due to some simplifications. First, the program-
mer does not have to worry about parallelism and the assignment of functional units.
The compiler is automatically dedicating operations, that can be executed in parallel,
to multiple functional units and performs pipelining self-acting. Second, the assignment
of registers and the insertion of necessary NOP instructions is performed automatically
by the compiler. Because of these facilities, the source code is written in a much more
straight-forward and linear way, and is also much easier to read, though this nomenclature
is used. Usually, a direct translation of C code into linear assembly does not automatically
lead to more efficient code. However, the compiler is able to better map the algorithm to
the underlying architecture and its machine instructions, and can, thus, sometimes achieve
more performant code.

Hand written assembly code is another option to improve program performance. The
need for this type of optimization by hand sometimes arises, if the compiler is not able
to efficiently translate critical code sections into machine code. Moreover, hand written
assembly code can be very helpful, if some block of operations and statements form a
very computationally intensive part of an algorithm and are used frequently. In this case,
special optimization of these section simply pays off. Hand written assembly code can be
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Figure 2.6: The overall block diagram of the prototypical hardware platform.

described as the most optimized way of programming, however, a lot of engineering power
has to be done, hence detailed deliberation is necessary about the real requirement of this
step.

2.5 TRICam - A prototypical embedded platform

A prototypical smart camera platform serving as a basis for image processing and computer
vision applications was developed in the years 2004 to 2006 by FREQUENTIS, the so-
called TRaffic Information Camera [10]. Initially designed as a high-quality analog-to-
digital video converter and MPEG4 encoder, the extendable DSP-based design of the
platform allows for the development and implementation of high-level computer vision
applications. A overall hardware layout of the platform is shown in Figure 2.6, while the
housing and the look of the system is depicted in Figure 2.7.

2.5.1 Main Features

The platform was developed to make it easily applicable as part of a larger surveillance
system, eventually using existing infrastructure. The main features of the platform are:

• 1 TMS320C6414 DSP with 600 MHz and 1MB cache

• 128 MBit SDRAM for video compression, processing and storage of temporary data

• 4 MBit Flash Memory for firmware storage
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Figure 2.7: General look of the housing and the TRICam platform.

• a 5-port ethernet switch with three 10/100 BaseTX ports and one 100 BaseFx fibre
port

• 1 video input processor, featuring 4 analogue CVBS or 2 SVHS TDM video channels
per system (PAL/NTSC)

• 1 FPGA for buffering video frames/scanlines between the video input processor and
the DSP

• a full-duplex PCM audio interface using 8 kHz for voice communication and sound
processing

• 2 RS232 serial ports

• a T-module expansion connector for two additional DSPs

The use of an analogue video interface allows for fast integration of the video server
into an already existing network of pre-assembled cameras. This is the main reason why
the platform was not designed to include an own imaging device. However, this does
not narrow the applicability of the platform in the domain of digital cameras, since the
integrated ethernet interface can also be used to connect the platform to digital cameras
sharing an ethernet port. Furthermore, the audio interface can be used to augment the
visual perception of any camera by audio information.

The computational resources of the platform may be scaled using the expansion module
and additional DSPs, allowing for the application of more demanding algorithms from
the field of computer vision. Any information, either generated or extracted, can be
transmitted to a given destination in various ways, like sharing a conventional computer
network or any other technology (modems or mobile phones may be interfaced using
the integrated serial ports). Thereby, the amount of information to be transmitted may
directly depend on the infrastructural resources available at site, thus, ranging from a
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few bytes for a simple text message to a fully encoded MPEG4 video stream [235] at 1.5
MBit/s. In summary, the platform can be used in a lot of different ways, for example, as
a simple compression device producing high-quality video for general surveillance tasks,
or as a complete video telephone box using Voice over IP (VoIP).

2.5.2 TRICam Specific Software Development

Irrespective of all aspects of integrability and commercialization, we use the platform
to test and develop different high-level computer vision algorithms for object detection
and recognition. Though the TMS320C6414 is a fixed-point processor lacking a FPU,
efficient execution of programs is only possible if they are using fixed-point arithmetic.
No additional devices or components but the basic setup as described above are used.
We neither make use of the expansion module or additional DSP power. This places
several limitations, concerning real-time capability of methods and memory consumption
of programs, but also states clear goals for the development and integration of approaches
on this fixed hardware setup.

We follow a principal way of development, which is divided into multiple steps and
allows rapid prototyping. The first stage of algorithm development is conducted on a usual
PC. First, algorithms are designed and implemented using a high-level programming and
design language, which is Mathworks MATLAB [233]. This allows for fast development us-
ing already available code sections, also neglecting possibly needed library support. After
verifying the functionality and suitability of an algorithm, we recode critical code sections
bit by bit into MATLAB executables, so-called MEX files. In doing so, we can make the
first step to transfer algorithm behavior straight into plain ANSI-C code. Thereby, we
are still able to use MATLAB functions and libraries, but are also capable of estimating
algorithm performance on the C programming language level. Note that we do not make
use of Simulink [63]. Finally, a plain C code executable is built, either under Windows or
Linux, where also all library dependencies have been removed. Using special, open-source
profiling tools like valgrind [239], we proof the final program to be free of memory leaks
or other bugs.

The second step of algorithm development is the deployment on our hardware plat-
form. The plain, library-free C code version of our algorithm is compiled using TIs Code
Composer Studio 3.2. Naturally, the main goal, to get the algorithm to run on the hard-
ware platform for the first time, is achieved through reorganization of memory usage. In
this context, we mainly speak of reducing the overall memory requirements of algorithms,
and refer to a well-structured procedure for exchanging data blocks between internal and
external memory banks, if necessary. After meeting that requirement, the implementation
is refined using all optimization and design rules explained in the previous section 2.4. The
refinement and optimization is iterated until the algorithm performance is satisfying, or
the amount of expected, additional performance gain does not justify further development
work. During optimization work, debugging on the hardware platform is done using a
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console on the onboard serial port interface, and the JTAG boundary scan interface. To
transmit input and output data for the final program, we mainly use the onboard network
interface or the analog video grabber. Video data is transmitted in raw, MPEG4 or JPEG
encoded format. Parametrization of algorithms is usually done at startup using XML files
and including a lightweight XML parser into the DSP program.

Our entire software setup forms a nice framework for fast development and rapid
prototyping of image processing algorithms on our hardware platform. As described above,
we follow rather general design rules for software development, which should also, up to a
certain extend, be applicable on other DSP-based hardware platforms.

2.6 Conclusion

Smart cameras are a very interesting field of research, bringing together developers from
the area of computer vision and embedded systems. In principle, the reasonability of
smart cameras is given by the necessity to perform dedicated tasks at camera site, to
take the burden from the human observer who is monitoring a large number of video
streams at the same time. It is clear, that for processing embedded hardware is preferred
over usual PCs, as there are special requirements for robustness against environmental
stress, power consumption and communication issues. In this context, the introduction
of smart cameras pushes the design space in many dimensions, such that smart camera
related development of embedded hardware forms its own field of research nowadays. In
terms of performance, DSP-based setups are good choices, as they are very powerful, yet
flexible and because they are strongly related to general purpose processors in terms of
programmability.

It is clear that the advantages of embedded systems, especially the low power consump-
tion, the small form factor and the robustness against environmental adversities, come at
the cost of complex memory management and more complicated design processes. Also
the lack of powerful design tools which can fully exploit the hardware properties play an
important role here, which makes the realization of computer vision algorithms on smart
cameras a tricky task. All the more, developers of computer vision algorithms have to take
care of these special issues at design time, to allow for high performance of approaches,
even with restricted computational and memory resources. Moreover, it is necessary to
be aware of the properties of the underlying hardware architecture, which allows for per-
forming different computations in a highly optimized manner. Summarizingly, software
development for smart cameras is a difficult task, which involves both, knowledge about
computer vision and experience in programming embedded computers.

The TRICam platform, that was presented in Section 2.5, can be described as a pro-
totypical smart camera platform. Although it does not feature a video sensor, the compu-
tational and memory resources, together with the different interfaces for communication
and the possibility to connect to digital or analog cameras, form a suitable setup for per-
forming state-of-the-art computer vision tasks. As a big advantage, the platform is very
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flexible due to the powerful DSP, which can be programmed easily. Because we are mainly
interested in the aspects of algorithm development for visual surveillance on smart cam-
eras, the setup proposed can be stated as an ideal playground for developing, investigating
and evaluating powerful computer vision approaches for surveillance purposes.
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Chapter 3

Related Work

A
big amount of research work in the computer vision community is focused on

object detection and object recognition. Mostly, direct applications can be found
in public surveillance, where security is one of the most often heard keywords

since the beginning of the new millennium. The amount of literature about detection
and recognition becomes more and more unmanageable. Algorithms have been proposed,
starting from raw object detection from aerial images, up to iris recognition for access
control systems of buildings. The range of applications for computer vision is nearly
unlimited.

However, even if good solutions already exist, algorithms steadily become better and
more accurate than the existing approaches. This often comes at the cost of practicability.
Many algorithms are highly efficient in terms of accuracy and performance. Unfortunately,
mostly they do not take environmental constraints into account which limit their deploy-
ment in the real-world. Another aspect is the need for robust algorithms, that still offer a
certain amount of reconfigurability and adaptability. This effectively means, that a given
set of algorithms is wanted, which is applicable and tunable to successfully perform a big
variety of tasks, not just a small number of applications in a small niche. The search for an
algorithm, being the universal remedy, is utopistic. However, it is clear that the develop-
ment must be towards a set of algorithms, keeping the most important keywords in mind
to be successively applicable: robustness, reconfigurability, adaptability, performance and
speed.

In the following we refer to a large number of approaches which can be denoted as
state-of-the-art methods for object detection and object recognition. We will mainly focus
on surveillance, since we believe it to be the largest area of related development. Note,
that this does not foreclose the application of specific methods in other situations and
applications. Starting with some general categorization of algorithms in computer vision,
we discuss the methods proposed for building an object representation in section 3.1.
Related work in the context of object detection is discussed in section 3.2, and the literature
available on object recognition is repeated in section 3.3, respectively. In this regard, we
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also list the available approaches proposed for application on embedded systems.
Note, that it is not possible to draw a clear border between approaches for detection and

recognition, due to the ambiguous use of both terms in the literature. Likewise, it is very
hard to limit the focus on approaches, which are dedicated especially to surveillance. This
is a consequence of the nomenclature surveillance describing a wide range of development,
rather than a small corner. However, we make a set of assumptions, which allows us to
structure existing literature in a well arranged way. First, we assume Learning to be a
general tool, rather than a special method itself. This interpretation is ambiguous and
cannot be pushed through entirely without lack of clarity, but already captures a large
range of methods.

We do not draw upon performing the best structuring over the entire set of approaches.
However, we still try our best to perform a grouping based on the conceptual and basic
methodologies of approaches. In the final section 3.5, we summarize the most important
aspects and justify our own selection of algorithms for closer investigation on our embedded
platform.

3.1 Computer Vision for Surveillance Applications

As already stated before, one of the driving forces in computer vision development is
the increasing need for security in public places. Another reason is, that due to the
deployment of more and more cameras in our environment, the amount of data (i.e. video
material) to be analyzed has become by far too large to be processable by humans. Thus
it is necessary to develop and deploy devices and algorithms which are doing the main
processing task automatically. In the context of surveillance, this mainly implies robust
detection of objects, recognizing their class membership or identity, and the interpretation
of behavior, events and threads of various kinds. This information is passed to a human
supervisor for further verification and inducement.

While the overall objective can be formulated in a few sentences, in practice it requires
knowledge from a multitude of technological areas to be fused to achieve this goal. Looking
at the algorithms and methods, the most important features are robustness, accuracy and
real-time capabilities. The first two properties are mainly determined by the ingredients
of the algorithms themselves; they are subject to optimization by using machine learning
techniques or expert knowledge. However, real-time capabilities finally make the difference
between prevention of an assault on public safety and reproducing the incident afterwards.

3.1.1 Algorithm Categorization

In principle it is necessary for object detection and object recognition to form some type
of representation including the main characteristics of the object class. In principle one
can use any type of visual feature, or also combinations of them, and a lot of different
approaches have evolved in the past. From the large amount of algorithms proposed in
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the literature for object representation, generally two groups of methods can be defined,
namely (1) global/patch-based methods and (2) local feature based methods.

1. Global/patch-based methods are algorithms where a single descriptor of an en-
tire object is created. In other words, an image patch showing an instance of an
object is taken and a transformation (or learning algorithm) is applied to the whole
patch to calculate an overall object representation.

2. Local feature based methods are approaches where local features are used to
describe parts of an object. This means that, given an image of an object instance,
single parts of the object are described locally and the final object representation
is a collection of these local descriptors. Optionally, also a collection of descriptors,
which reflect the constellation and relationships between the local features, are used.

For the direct application of these methods for the individual tasks of object detection
and object recognition, a large number of solutions have been proposed likewise using
algorithms from both groups. In principle, both types of methods have their advantages
and disadvantages in their application for the specific task, be it object detection or object
recognition. Although no general statement about the special suitability of one group for
a given task can be made, recently, Global Methods were used more often for object
detection, while Local Methods were more often used for object recognition. The reasons
will be elucidated in the following as we will shortly outline the principles of both global
and local approaches in the following sections 3.1.2 and 3.1.3. For now note that in Figure
3.1 the ideas behind both approaches are illustrated.

One important thing to mention is, that the rigidity of objects plays a vital role in the
development of algorithms for both tasks, object detection and recognition. Rigid objects
form the largest group of objects in our environment, and the task of building a suitable
object or class representation is already hard enough, due to varying illumination, intra-
class variation and other adversities. In contrast, algorithms for non-rigid objects have to
incorporate additional knowledge about geometry or deformability of the object or class.
In fact, this information is sometimes not available or hard to acquire. But even if it is
available, incorporating it definitely comes at considerable algorithm complexity, which
is often not worth the additional effort. Summarizingly, the development of approaches
becomes harder, and algorithms become more complex with increasing deformability of
objects. Therefore, one motto, often followed in algorithm design, is to develop methods
for rigid objects, which are also able to cope with a limited amount of deformability.
This variability can be treated as additional intra-class variation, such that the principle
algorithm design must not be changed at all. In this context, a good example is the
representation of faces for detection or recognition, which treat the facial expression as
supplementary intra-class variation. Another example is the representation of humans in
describing the appearance of pedestrians, where mainly the human torso and the head is
described, omitting details about the arms and the legs, which are the ”degrees of freedom”
in this case.
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Figure 3.1: Global versus local description of an object. Most general methods are based on
calculating an appropriate transformation and on projections, thus building a global representation
is sloppy denoted as transformations and projections. Local representations are mostly based on
interest point detection and description, which is depicted on the right and denoted as Feature

Detectors and Descriptors here.

3.1.2 Global Methods

A lot of different approaches have been proposed in recent years for creating a global
object representation. Giving an overview of all classes of approaches would go far beyond
the scope of this thesis. However we will still mention the biggest groups of algorithms
here and focus on describing the ones related to our work in more detail later.

3.1.2.1 Template Matching

A rather primitive method of representing an object class is to use a patch showing a
prototypical instance of an object, a so-called template. This template is used, together
with some mathematical function, to calculate a similarity measurement between a given
patch and this template. The most common measurement in this respect is the Normalized

Cross Correlation (NCC). For searching object instances in larger images, an exhaustive
matching is performed on subwindows of images, and for multi-scale search, exhaustive
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matching in an appropriate image pyramid is necessary. Note that this is more or less
equivalent to filtering the larger image with the template as a filter, and that this is a very
computationally expensive task.

Template matching has been proposed by various authors, especially in the context of
object models consisting of dominant edges. So-called wireframe models were proposed
by Koller et al. [124], or by Ferryman et al. [72]. Jain and Zongker proposed the use of
deformable templates for recognition of handwritten digits [107]. More recently, Cole et

al. used template matching for recognizing different types of Lego bricks in a database
of 100,000 images [50]. Template Matching has also been used in larger detection and
recognition frameworks for matching shape templates of object parts, for example by
Opelt et al. [172]. However, the large computational costs of template matching is a big
drawback, especially foreclosing the real-time capability of this type of approaches.

3.1.2.2 Subspace Methods

From all methods working on a complete image or an entire image patch, the biggest
group of approaches are the subspace methods. This group is based on projections and
transformations from high dimensional image space into lower dimensional spaces where
the resulting dimensions of space can be adjusted.

Subspace methods mainly include linear approaches like Principal Component Analysis

(PCA) [101, 109, 113, 183], Linear Discriminant Analysis (LDA) [20, 73, 277], Nonnegative

Matrix Factorization (NMF) [130, 177, 215], Independent Component Analysis (ICA)
[8, 17, 105] and Canonical Correlation Analysis (CCA) [96, 150]. As a subgroup it contains
Kernel extended methods to make all approaches mentioned applicable in the nonlinear
case, Kernel PCA [211], Kernel LDA [152], Kernel NMF [276], Kernel ICA [14] and Kernel
CCA [150]. Other methods for the nonlinear case are Local Linear Embedding (LLE) [200],
or Isometric Feature Mapping (ISOMAP) [230, 231]. For a short introduction and outline
of global methods the reader is referred to the work of Roth [196].

The major problem of subspace methods is their sensitivity to background noise and
occlusion. Moreover finding the right transformations is highly computationally and mem-
ory intensive in case of large number of images. Coevally the calculations sometimes suffer
from numerical inaccuracies which are additional sources of error.

3.1.2.3 Shape Based Methods and Moments

Shape based methods are another big group of global methods complementary to subspace

methods. For an overview of different shape matching approaches the reader is referred
to the survey of Veltkamp and Hagedoorn [249].

Popular approaches are based on pointwise sampling of object outlines and registration
of point sets. Chui and Rangarajan proposed the use of a thin-plate-spline model for
registering point sets by searching for a global optimal transformation and image warp
[48]. The modeling of point sets using statistical descriptions of their location was proposed
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by Cootes et al. and is known as Active Shape Models (ASMs) [54]. Later, Cootes et al.
extended the approach to also capture some degree of appearance within the models,
which is known as Active Appearance Models (AAMs) [53]. Another popular approach
was proposed by Belongie et al. [22] called the Shape-Context descriptor to form an object
representation as a whole by a set of circular edge histograms. A given number of t sample
points from the edges of an object are sampled randomly and for each sample point all
t− 1 remaining points are accumulated in a histogram in log-polar space. The sum of all
histograms finally builds the representation of an object and matching is done by solving
a bipartite graph matching problem.

Thuresson and Carlsson [241] propose the use of a combined shape and appearance
histogram. By using an ordering function over the relative orientation between triples of
edge points, the shape and the appearance is coevally encoded in a histogram, while the
gradient strength at the selected points serves as a weighting factor.

Closely related to shape-based methods, the usage of different types of moments has
been proposed by various authors. Geometric moments were first introduced by Hu
who applied moments to the task of character recognition in 1962 [102]. The usage of
the Fourier transform of object boundaries to build a translation and rotation invariant
description was proposed by Fu and Persoon [80]. Zernike moments were introduced
by Teague [228], Rotational moments were investigated by Boyce and Hossack [28] and
Pseudo-Zernike moments were proposed by Teh and Chin [229]. For a general survey
on moment-based methods for object detection and recognition in image analysis the in-
terested reader is referred to the survey of Prokop and Reeves [186]. Closely related to
moments, the theory of Wavelets in image analysis was summarized by Mallat [143], which
forms the base for image compression, but also for coding and, thus, efficient describing
images or image patches. Another approach was proposed by Ballard and is known as
the Generalized Hough Transform (GHT). This approach is an extension to the original
Hough transform to allow for representing objects with more complex shapes [16].

Usually, shape-based methods use segmented input data, which is the boundary of
an object respectively. These methods have been shown to be suitable for special tasks,
like optical character recognition, recognition of logos on the MPEG7 database, or for re-
trieval of binary images from a database based on a similarity criterion. One disadvantage
of shape-based methods using point sets is their high computational complexity, as the
matching of object representations, consisting of sets of points, is a difficult task. More-
over, the boundary of an object can be highly disturbed through occlusions or noise, which
makes the correspondence finding problem even harder. However, the major drawback of
shape-based methods is the large deformability of shape, which makes it really hard to
define and build a compact, yet robust and efficient representation for a single object or
object classes.
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3.1.3 Local Methods

The main idea behind local methods is maintaining object representations from collections
of locally sampled descriptions. In other words, the appearance of local parts of a single
object is encoded in descriptors, and a set of these descriptors forms the final object
representation. For finding the distinguishable regions so-called interest region detectors
are used, which find regions or points of special visual distinctiveness. The neighborhood
of such regions is subsequently encoded using a special transform to build a description,
and the multitude of descriptors forms an object representation.

Two aspects are important when working with local features. First, local features are
usually computed without spatial information between them, so they are usually treated
separately. However, different approaches have been proposed to take advantage of spatial
information, either to achieve a higher performance during the first detection or recognition
step, or to verify a hypothesis in a verification stage. Second, efficient descriptor matching
is inevitable to allow for real-time performance. Determining matches between descriptors
is based on comparing them one by one, which is an exhaustive search technique. Due
to the computational complexity of the task and the resulting amount of time needed to
solve it, different strategies have been investigated to achieve a considerable speedup [203].
However, no methods are known to solve the matching problem in high dimensional spaces
in a satisfactory way concerning runtime. Thus, tree-like data structures have been proven
to be favorable for approximating the optimal solution and establishing correspondences.

The vast amount of approaches for detectors and descriptors makes it impossible to
give an extensive overview about all methods here. Thus we will only describe the general
ideas behind local methods and mention the most popular algorithms.

3.1.3.1 Interest Region Detectors

The basic principle of interest points and regions is the search for spots and areas in an
image which exhibit a predefined property making them special in relation to their local
neighborhood. This property should make the region distinguishable from its neighbor-
hood and detectable repeatedly. Furthermore the detection of these features should be -
to the best possible - illumination and viewpoint invariant.

The first important interest point detector, the so-called Harris Corner detector, was
proposed in 1988 by Harris and Stephens [91]. It exhibits excellent repeatability and was
subsequently used for object recognition purposes by Schmid and Mohr [209]. An extension
to the Harris detector to include scale information was later reported by Mikolajczyk and
Schmid as Harris-Laplace detector [156] and was used by Schaffalitzky and Zisserman [204]
for multi-view matching of unordered image sets. Another approach to detect blob-like
image structure is to search points where the determinant of the Hessian matrix assumes
a local extremum, which is called the Hessian detector. Further developments to include
affine covariance resulted in the Harris-Affine and Hessian-Affine detectors proposed by
Mikolajczyk [153, 155].
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The currently most popular two-part approach known as SIFT (Scale Invariant Feature

Transform) was proposed by Lowe [142], where the first part is an interest point detector.
The DoG (Difference of Gaussian) detector takes the differences of Gaussian blurred images
as an approximation of the scale normalized Laplacian and uses the local maxima of the
responses in scale space as an indicator for a keypoint. A complementary feature detector,
the MSER (Maximally Stable Extremal Regions) detector, was proposed by Matas et al.
[145]. In short, the MSER detector searches for regions which are brighter or darker than
their surroundings, i.e. are surrounded by darker, vice-versa brighter pixels. First, pixels
are sorted in ascending or descending order of their intensity value, depending on the region
type to be detected. The pixel array is sequentially fed into a union-find algorithm and a
tree-like shaped data structure is maintained, whereas the nodes contain information about
pixel neighborhoods, as well as information about intensity value relationships. Finally,
nodes which satisfy a set of predefined criteria are sought by a tree traversing algorithm1.

Two affine covariant region detectors were proposed by Tuytelaars and van Gool [245],
IBR (Intensity Based Regions) and EBR (Edge Based Regions). IBRs are based on ex-
trema in intensity. Given a local intensity extremum, the brightness function along rays
emanating from the extremum is studied. This function itself exhibits an extremum at
locations where the image intensity suddenly changes. Linking all points of the emanating
rays corresponding to this extremum forms and IBR. EBRs are determined from corner
points and edges nearby. Given a single corner point and walking along the edges in
opposite directions with two more control points, a one-dimensional class of parallelo-
grams is introduced using the corner itself and the vectors pointing from the corner to the
control points. Studying a function of texture and using additional constraints a single
parallelogram is selected to be an EBR.

Another algorithm termed Salient Region detector was proposed by Kadir and Brady
[110] and is based on the Probability Density Function (PDF) of intensity values computed
over an elliptical region. For each pixel the entropy extrema for an ellipse centered at this
pixel is recorded over the ellipse parameters orientation θ, scale s and the ratio of major
to minor axis λ. From a sorted list of all region candidates the n most salient ones are
chosen.

For an extensive evaluation of a large number of affine region detectors refer to the
work of Mikolajczyk et al. [159].

3.1.3.2 Descriptors

Generally speaking, a descriptor is an abstract characterization of an image patch. Usually
the image patch is chosen to be the local environment of an interest region. Based on
various algorithms, methods or transformations, the resulting characterization can be
made rotation invariant or, at least partially, insensitive to affine transformations.

1The algorithm described has complexity O(Nlog(log(N))). A more efficient algorithm based on the

use of component tree analysis is to be found in the work of Donoser and Bischof [65].
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(a) (b)

(c) (d) (e)

Figure 3.2: Overview about different descriptors and their calculation. (a) SIFT descriptor
calculation scheme, taken from [142]. (b) SPIN descriptor and (c) RIFT descriptor, taken from
[129]. (d) Shape Context descriptor mask, as described in [22]. (e) GLOH descriptor calculation
mask, as described in [157].

Most approaches are based on gradient calculations or image brightness values. As a
second part of the SIFT approach, Lowe [142] proposed the use of descriptors based on
stacked gradient histograms. The single histograms are calculated in a subdivided patch
discretizing the gradient orientation in order to cover spatial information. Finally they
are concatenated to form a 128-dimensional descriptor. Recently Ke and Sukthankar [115]
proposed the so-called PCASIFT descriptor based on eigenspace analysis. They calculated
a PCA (Principal Component Analysis) eigenspace on the gradient images of a representa-
tive number of over 20000 image patches. The descriptor of a new image tile is generated
by projecting the gradients of the tile onto the precalculated eigenspace keeping only the
d most significant eigenvectors. Thus an efficient compression in descriptor dimensionality
(d ≤ 36) is achieved, coevally keeping the performance at a rate comparable to the origi-
nal SIFT descriptor. Closely related to the SIFT approach the GLOH (Gradient location

and orientation histogram) descriptor was proposed by Mikolajczyk and Schmid [157].
Opposed to SIFT gradient histograms are calculated on a finer circular rather than on
a coarser rectangular grid, which results in a 272 dimensional histogram. PCA is subse-
quently used to reduce the descriptor dimensionality to 128 again. Two rotation invariant
descriptors were proposed by Lazebnik et al. [129], the RIFT (Rotation-Invariant Fea-
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ture Transform) and the SPIN-Image descriptors. The RIFT descriptor is calculated on
a circular normalized patch which is divided into concentric rings of equal width. Within
each ring the gradient orientation histogram is computed while the gradient direction is
calculated relative to the direction of the vector pointing outward from the center. The
SPIN-Image is a two dimensional histogram encoding the distribution of image brightness
values in the neighborhood of a particular center point. The histogram has two dimen-
sions, namely the distance from the center point and the intensity value. Quantizing the
distance, the value of a bin corresponds to the histogram of the intensity values of pixels
located at a fixed distance from the center point.

A descriptor based on edge pixels was proposed by Belongie et al. [22]. Given n sample
points from the shape of an object, the Shape Context describes the coarse distribution
of the n − 1 points with respect to a given point pi. For this point, a coarse histogram
of the relative coordinates of the remaining n − 1 points in log-polar space is computed
and called the Shape Context of pi. Note that a limit on the distance of the neighboring
points can be used to build a local or a global object description.

Filter based approaches to build local descriptions, also known as differential-based
approaches, include Steerable Filters or Complex Filters amongst others. To approximate
a point neighborhood a set of image derivatives computed up to a given order is used.
Using local derivatives, also known as local jet, Freeman and Adelson [74] developed
Steerable Filters, which steer derivatives in a particular direction given the components of
the local jet. To obtain a stable estimate of the derivatives, Gaussian filters are used for
convolution. Based on steerable filters, Carneiro and Jepson proposed the use of features,
which include phase-based information [42]. Schaffalitzky and Zisserman [204] proposed
to use Complex Filters, which are derived from the family K(x, y, θ) = f(x, y) · e(jθ). The
orientation is denoted as θ and a polynomial is used for the function f(x, y).

The multitude of most prominent descriptors were evaluated by Mikolajczyk and
Schmid [157]. For an explanation and more detailed listing please refer to their work.

Detectors and descriptors are very powerful tools to describe objects as a set of parts
on a very abstract level. This type of representation has several advantages, such as illu-
mination insensitivity, or at least partial insensitivity to occlusion and background noise.
However, these advantages come at considerable computational cost, and the amount of
memory needed is also substantial. Nevertheless, the approaches are especially suited if
the high distinctiveness of the features is used in the right way, thus the approaches are
very popular.

3.1.4 Learning Algorithms

Methods, involving special learning algorithms, have attracted a lot of attention recently.
The main reason is their ability to be applicable to various different object categories,
without changing the basic principles of algorithms. Furthermore, their usage allows for
scaling and adapting approaches to given situations. Especially in the area of object
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detection, learning algorithms have been successfully used as classification techniques to
solve a number of important problems. In contrast, the use of learning algorithms in
the area of object recognition is rather evident and needs no further explanation. For a
basic introduction to learning in the context of pattern recognition, the interested reader
is referred to the book of Duda, Hart and Stork [194] and to the book of Bishop [27].
Hereafter, only approaches are mentioned, which introduced a given learning algorithm
into the domain of object detection and significantly influenced algorithm development in
the past.

The work of Hopfield inspired the use of Neural Networks for pattern recognition in
the beginning of the 1980s [99, 100]. For example, Fukushima proposed the use of neural
networks for digit recognition [81]. Rumelhart et al. introduced the Back-Propagation

algorithm for training neural networks [202]. Neural Networks (NN) [26] for building
descriptions of faces were proposed by Vaillant et al. [246] and by Rowley et al. [201]. The
neural network is trained to implement a filter which is separating objects, respectively
faces in this case, from background. The general object representation included in the
neural network is trained from a set of objects. In the approach of Sung and Poggio,
clustering and distance metrics are used in combination with a neural network [227]. First
the object and non-object manifolds are modeled by clusters. The neural network is then
used to classify patches by their distances to and from clusters as objects or non-objects.

The use of Support Vector Machines (SVMs) [248] for representing faces was proposed
by Osuna et al. [174] and by Romdhani et al. [195]. In the original approach of Osuna
et al. a polynomial-2 SVM is used to separate face images from non-face images, reaching
detection rates similar to those of Sung and Poggio. Later Romdhani et al. modified the
SVM algorithm to reduce the number of support vectors needed and to speed up the
approach considerably by using a sequential evaluation and early rejection of patches.

Colmenarez and Huang proposed the use of Markov Chains for face detection [51] and
Dass and Jain extended the approach using Markov Random Fields (MRFs) [59]. MRFs
for building models for object recognition have been proposed by Caputo et al. [41]. They
presented a special version of MRFs and demonstrated the plausibility of their approach
on a 100 object database.

The currently most popular algorithm for generating a description of objects from a
predefined category was proposed by Viola and Jones [250]. The algorithm was invented
for rapid object detection and is based on combining classifier responses using Boosting
[206, 207]. The appearance of objects within a given class is modeled using a set of
weak classifiers which are arranged locally and are based on simple Haar wavelets or more
complex features like gradient histograms. Each single weak classifier delivers a binary
decision, or discrete valued confidence rate, which just has to be better than random.
Multiple of these classifiers are combined as a weighted linear combination into a stage
by sequentially selecting those which deliver the smallest classification error on a given
training set. If a predefined performance threshold is reached, the stage is terminated
and a new stage is begun, after the training set is refilled to include enough positive
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and negative examples. Multiple stages are combined to form a single strong classifier
capturing the representation of the object class. Details about Boosting will be given in
chapter 4.

As already mentioned before, one important aspect of learning based approaches is
their ability to be adaptable to different situations, objects and environmental conditions.
Recent advances in artificial intelligence allow for efficient training and building of highly
accurate and extensive object representations. Most of recent approaches include some
type of learning, which also fortifies the special relevance of learning for computer vision.

3.1.5 Other Algorithms

Other types of algorithms proposed in the context of forming object representations in-
clude Nearest Neighbor (NN) classifiers, Perceptron classifiers or the Winnow algorithm,
amongst others. For a more in-depth description and review, again, the interested reader
is referred to the book of Duda, Hart and Stork [194] and to the book of Bishop [27].

3.2 Related Studies in Object Detection

For the task of object detection a few popular approaches exist whereas the majority of
them is based on global object representations. After building an object representation
an exhaustive scan over entire images in multiple scales is performed to locate instances
of an object. In the literature almost all algorithms using a global representation were
introduced given the problem of face detection. However, the basics of the methods are
not limited to the face detection problem but were formulated more generally later and
can be applied to any other object category under certain circumstances. Beside global
methods only a few approaches exist which are based on local features. We will treat both
types of approaches in the following. Note that we have used a rather rough classification
in a set of subgroups, and that some approaches, only mentioned once, might belong to
an other group as well. A table summarizing all approaches mentioned here is given at
the end of this section in Table 3.1.

3.2.1 Subspace based Detection

Kirby and Sirovich introduced the Principal Component Analysis (PCA) to computer
vision for characterization of human faces [120]. The so-called Eigenface approach was then
proposed and investigated more exhaustively by Turk and Pentland for face recognition
[244], applying PCA to a set of training images. Interpreting each image in the training
set as a long linear array, they all reside in a small low-dimensional portion of the high
dimensional image space, the so called face space. By employing PCA, this face space is
described by a given number of eigenvectors which best describe the variation of the data.
Given these eigenvectors, any image patch can be transformed into the face space and
its distance can be calculated. Applying this transformation on all subpatches of larger
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images, a distance map can be generated and detection can be done by putting a threshold
on the distance. Later, Moghaddam and Pentland enhanced the detection approach using
a probabilistic measure instead of the Euclidean distance to improve detection accuracy
[160, 161].

Yang et al. proposed the combination of several linear subspaces to form a powerful face
detector [272]. First, a Self-Organizing-Map (SOM) is used to separate face and non-face
examples into different clusters. Labels are assigned to the training examples by assigning
labels to the clusters. Then, FLD is used to maximize the ratio of between-class scatter
and within-class scatter. Finally, the training sets are projected into a lower dimensional
feature space, and a Gaussian distribution is used to model the class-conditional density
function for the individual classes. For detecting faces in a test image, a detection is
determined upon the maximum-likelihood criterion calculated from the Gaussian density
functions.

3.2.2 Support Vector Machine and Neural Network based Detection

The approach invented by Osuna et al. [174] and later enhanced by Romdhani et al.
[195] uses an object representation based on a Support Vector classifier, which is applied
to subwindows of an image exhaustively to deliver the number and locations of detected
faces. Similarly, Papageorgiou et al. used an overcomplete set of Haar wavelets and a SVM
classifier for the face detection task [178]. For the task of person detection in natural street
imagery, they also trained a person detector. The detection results of the exhaustive scan
are enhanced by incorporating motion information between consecutive frames and adding
a special interest region to hypotheses of previously detected persons.

Similar approaches were proposed by Vaillant et al. [246] and by Rowley et al. [201]. In
these methods, a single subpatch is the input for a neural network classifier. Input images
are consecutively subsampled by a factor of 1.2 to build an image pyramid. 20x20 pixel
subpatches are exhaustively extracted from each layer of the pyramid and forwarded to
the classifier to achieve multi-scale detection. The neural network contains three different
types of receptive fields as input and a variable number of hidden units. Due to the
backpropagation based training of the network, in each training cycle additional false
positives are added as new negatives for the next training step, which is also denoted
as bootstrapping procedure. After an entire detection process overlapping detections are
discarded by selecting the detection with the highest confidence rate and suppressing all
others. The approach leads to acceptable performance rates in terms of detection accuracy
and Rowley et al. also demonstrated the real-time capability of the approach [201].

Another neural network based approach was proposed by Sung and Poggio [227]. From
a set of 19x19 pixel face images, a canonical face model is generated by fitting six multi-
dimensional Gaussian distributions into the image space by using a modified k-means
clustering algorithm. Another six multi-dimensional Gaussian distributions are fitted to
a set of non-face, but face-like image samples. The models are simplified by a PCA-like
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projection to a lower dimensional ”face-space”, and two distance metrics are introduced
to measure face or non-face similarity. A multi-layer neural network is finally trained to
classify single image patches.

A shape based approach for object detection was proposed by Gavrila and Philomin
[83]. Shape templates of pedestrians are hierarchically ordered and a distance transform is
used to generate initial object hypotheses. Finally a Radial-Basis-Function (RBF) neural
network, whose application and structure is not described in detail, is used to verify the
initial detection result. This work is mentioned, because the authors try to optimize the
algorithm for a Pentium based hardware platform, addressing aspects of hardware-related
algorithm optimization similar to our own considerations treated earlier. Later, Leibe
et al. proposed a combined approach of local and global features for pedestrian detection
[133]. Similar to the work of Gavrila and Philomin, for the global detection cue a silhouette
template and Champfer matching is used.

(a)

(b)

Figure 3.3: Pedestrian detection. (a) Some results of the detector developed in [251]. (b) Some
results presented in [133]

More recently, Dalal and Triggs proposed the use of linear SVMs and Histograms of

Oriented Gradients (HOGs) for pedestrian detection in cluttered scenes [57]. The method
is mainly based on the accumulation of several gradient histograms on small blocks of a
given sample image. This collection of histograms forms a relatively simple, yet powerful
set of spatial descriptors. By training a SVM on a positive and negative training set,
the weighting function for the individual blocks is determined. Finally the presence or
absence of a pedestrian in a test image is, again, determined by an exhaustive scan and
non-maximum suppression.
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3.2.3 Boosting based Detection

Schneiderman and Kanade proposed to use a statistical combination of visual features,
which are represented as histograms of quantized wavelet coefficients [210]. For train-
ing a detector containing the most suitable features, the AdaBoost algorithm is used.
The approach allows for 3D object detection, using separate detectors for different object
viewpoints, but is far from real-time capability due to the detector size and complexity.

The ground-breaking work of Viola and Jones established the use of Boosting as a very
powerful method for object detection in the computer vision community [250]. The first
important property of their approach is the use of an intermediate image representation,
which mainly allows the calculation of simple Haar wavelet features in constant time. The
second contribution is the combination of weak classifiers, trained on those features, in a
cascade like structure to allow for early rejection of non-object images during detection.
After the approach of Rowley et al. [201], this approach also allowed for real-time detection
of objects based on appearance, and was shown to perform well on the task of non-rigid
object detection in single views.

Since the initial publication of the basic algorithm, a number of extensions have been
proposed, mainly focusing on the calculation accuracy, the cascade building approach and
the type of features used. Lienhart and Maydt proposed an enhanced set of Haar wavelets
that are calculated using a second type of image representation [139]. Implementations
of the original approach and the enhanced set of features is nowadays available as open-
source software in the OpenCV library [236]. For the task of face detection, Chen et al.
proposed the use of Gabor wavelets [45] as weak classifiers. Gabor filter based features
are computationally more expensive, however, also being more powerful than simple Haar
wavelets. As the evaluation of their approach can be interpreted, the number of features
can be reduced through using more powerful features. However, the overall computational
complexity is not reduced significantly, which coevally means that the use of advanced
features only has limited benefits.

For detecting pedestrians, Viola et al. proposed features combined from simple Haar
wavelets and motion information [251]. The main advantage of the approach is that the
important queue of motion information, if motion is present at all, is directly used to
build a more powerful detector with less false detections. However, if pedestrians are
not moving, the purpose of the special motion patterns is lost and the approach reduces
to the original approach proposed. Another approach for human detection was based
by Mikolajczyk et al., using a probabilistic model of body parts [158]. Seven different
body parts are defined, which are learned using gradient and filter response features and
AdaBoost. The final strong classifiers for individual body parts are combined to vote for
the final hypothesis of a human body.

A general framework for object detection and recognition, which is based on a variety
of different local features, was proposed by Opelt et al. [170]. Using two different interest
point detectors and four different descriptors, a rich description of the content of an
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image is created. Weak classifiers are built from single features, whereas their presence
or absence, together with a threshold, is taken as parameters. Final strong classifiers are
built using the AdaBoost algorithm and a set of training images from a given category.
The approach was shown to achieve good performance for generic object detection in
natural images. Later, Opelt et al. proposed a different set of features for object detection,
so-called boundary fragments [171]. These features are edge templates, from which a
vocabulary is learned using the AdaBoost algorithm. The fragments are mainly used to
model the outline of objects and to vote for an object hypothesis. The approach is shown
to perform well for the detection of complex categories, such as cows or bottles.

(a) (b)

Figure 3.4: Images taken from the work of Agarwal and Roth [2]. (a) Image patches extracted
using the Förstner operator on a set of training images. (b) Examples for clusters of representative,
visually similar patches.

For generating detectors for multiple object classes, or classes with high intra-class
variation, different approaches have been proposed recently. The main idea is to use a
tree-like structure, because it allows for compact and efficient detection. Amongst others,
approaches were proposed by Tu [243] or Huang et al. [103]. Wu and Nevatia proposed
the Cluster Boosting Tree method, which combines an unsupervised clustering approach
with the idea of Boosting for forming a classifier tree [266]. Torralba et al. proposed the
combination of ”stumps” of boosted classifiers for forming a classifier for multi-class object
detection [242].

3.2.4 Local Feature based Detection

Agarwal and Roth introduced an approach for object detection based on a representative
vocabulary of visually similar parts of an object class [2]. First, interest points are de-
tected from a training set of images using the Förstner operator and fixed-size patches are
extracted around the detected keypoints. Based on a similarity measure, visually similar
patches are clustered (see Figure 3.4). All training images are subsequently represented as
binary feature vectors, which capture both the presence of a visual feature and its spatial
relation to other features. The Sparse Network of Winnows (SNoW) algorithm, a Winnow
based learning algorithm, is used to learn a powerful classifier over the training vectors.
For detection, the notion of a Classifier Activation Map is introduced, which allows to
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(a) (b)

(c)

Figure 3.5: Vehicle detection results. (a) Results for rear-view vehicle detection in [71]. (b)
Results for side-view vehicle detection, taken from [66]. (c) Results for side-view vehicle detection
and vehicle segmentation, taken from [132].

assign each location in an image a confidence value for the presence or absence of an
object.

Dorko and Schmid proposed a framework for constructing object part descriptors from
scale-invariant local features [66]. Two learning approaches, namely SVM and Gaussian

Mixture Models (GMMs) are used to learn a classifier for a single part. By combining
multiple part detectors, they achieve a robust detection under scale changes and variations
in viewing conditions.
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Leibe and Schiele proposed a system for interleaved object detection and segmentation
[132]. Based on the idea of Agarwal and Roth, a vocabulary of representative image
patches is built, using the Harris detector to acquire seeds and an agglomerative clustering
algorithm to cluster visually similar patches. In the detection stage, the parts detected in
objects are voting individually for the center of a potential object hypothesis. For each
pixel, a probability function is calculated, which predicates the likelihood of the pixel
being part of an object hypothesis. The approach is shown to perform well and delivers
good results in segmenting objects from background.

Later, Leibe et al. proposed a combined approach of local and global features for
pedestrian detection [133]. As local features DoG points are used, which serve as seeds for
the extraction of plain image patches. These patches are resized to a common size of 25x25
pixels and are clustered using an agglomerative clustering approach. Only the centers of
the resulting clusters are stored as representatives of appearance in a compact codebook.
During detection, the keypoint detection is performed, and matches are recorded to vote
for object hypotheses, in which the normalized grayscale correlation is used for determining
correspondences together with a Hough voting procedure.

Mikolajczyk et al. evaluated a representative set of detector and descriptor combina-
tions for building an object representation, and showed the plausibility of their approach
on the task of pedestrian detection [154]. The evaluation of the approach is similar to the
one of Leibe et al., but uses the best performing combination of detector and descriptor
as local feature cue.

A real-time capable object detection approach based on local features was proposed
by Lepetit et al. [137]. In an offline stage, keypoints are detected on a specific object,
whose views are artificially translated, rotated and affinely distorted. The keypoints are
organized in a set of multiple randomized trees. The approach has two nice properties.
First, since the query and matching during runtime can be accomplished efficiently, it is
possible to detect an object in realtime. Second, also partially occluded, deformable and
3D objects can be detected due to the use of local features and the artificial distortion
mechanism during training. As an extension to randomized trees, so-called ferns were
proposed by Ozuysal et al. to further speed up the matching step [176]. By using a Naive
Bayesian framework, faster and more robust classification results are achieved.

3.2.5 Notes

There exists a large number of different approaches for object detection proposed in the
literature without reference to any hardware platform. A listing of all approaches men-
tioned in this Section is given in Table 3.1. It is on the developer to choose the most
suitable algorithm from this set, to meet performance limits and predefined requirements.
This is of special importance, for example, in the automotive domain, as algorithms have
to be highly robust and have to deliver high performance. Any failure of a system may be
fatal to somebodys health and, possibly, life.
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Subspace Based SVM and NN Based

Detection Detection

Kirby and Sirovich [120] Osuna et al. [174], Romdhani et al. [195]

Turk and Pentland [244] Papageorgiou et al. [178], Vaillant et al. [246]

Moghaddam and Pentland [160, 161] Rowley et al. [201], Sung and Poggio [227]

Yang et al. [272] Gavrila and Philomin [83], Leibe et al. [133]

Dalal and Triggs [57]

Boosting Based Local Feature

Detection Based Detection

Schneiderman and Kanade [210], Chen et al. [45] Agarwal and Roth [2], Dorko and Schmid [66]

Viola and Jones [250], Lienhart and Maydt [139] Leibe and Schiele [132], Leibe et al. [133]

Viola et al. [251], Mikolajczyk et al. [158] Mikolajczyk et al. [154], Lepetit et al. [137]

Opelt et al. [170, 171], Tu [243], Huang et al. [103] Ozuysal et al. [176]

Wu and Nevatia [266], Torralba et al. [242]

Table 3.1: Summary of the object detection approaches mentioned in Section 3.2.

Recently, a lot of attention is paid to the Viola-Jones algorithm, due to its robustness,
high performance and, even more important, because of the large range of possible applica-
tions, adaptations and modifications for optimization. It is evident that some form of this
approach can definitely serve as one module within a larger system, which delivers object
hypotheses with satisfying accuracy and high reliability. Thus we also feel confident, that
exploiting the possibilities of adaptation of this method onto embedded hardware is a very
important step towards development of a reliable smart camera setup for surveillance.

3.3 Related Studies in Object Recognition

Object recognition is the task of identifying a specific object, or the membership of a
given object to a predefined class. Depending on the object appearance, rigidity and
object shape, different approaches have been proposed, using likewise global and local
object descriptions and representations. However, recently, local feature based representa-
tions have attracted much interest, due to their flexibility in usage, the advances in rapid
computing, and their other advantages over global methods.

For an overview of a lot of different methods in the area of face recognition, the
interested reader is referred to the Handbook of Face Recognition by Li and Jain [138]. A
prominent, yet incomplete set of approaches follows, which is on object recognition from
a more general point of view and is, however, especially focusing on local feature based
methods. Again note that we roughly structure the methods into subgroups, and that
affinities with other groups are evident.
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3.3.1 Subspace based Recognition

The Eigenface approach of Turk and Pentland was also used to recognize faces from
several different individuals [244]. In this context, a probabilistic similarity measurement
was proposed by Moghaddam and Pentland and applied to different recognition tasks, such
as hand gesture recognition or face recognition [160, 161]. Using the method proposed,
it is possible to also determine the pose of a face looking at the face space of a given
individual.

Belhumeur et al. proposed the use of Fishers Linear Discriminant (FLD) to build an
object representation, the so-called Fisherface approach [20]. While PCA is used to retain
the subspace with the highest amount of variation in the data, this becomes definitely a
problem, if this variation is mainly caused by changing illumination or change of (facial)
expression. For discriminating objects from each other, the FLD can be successfully
applied to find the best linear separation between individual classes, regardless of this type
of variation. Consequently this approach achieves better performance than the original
Eigenface approach. For a more elaborate introduction and overview to these and other
subspace methods in the context of face recognition, the reader is referred to the work of
Shakhnarovich and Moghaddam [213].

For more general object recognition tasks, the use of a robust method and multi-
ple Eigenspaces was proposed by Leonardis and Bischof [135]. By combining a random
sampling strategy with the selection of the right hypothesis according to the Minimum

Description Length (MDL) principle, a framework for robust object recognition in small
size databases is presented. Later, Leonardis et al. extended the approach to incrementally
select and grow the number and shape of Eigenspaces to cope with a larger number of
objects [136].

3.3.2 Local Feature based Recognition

Object representations are collections of local, usually unordered, features. The recog-
nition task is usually accomplished by a voting based scheme, where correspondences
between features of a query object and several object representations are accumulated.
The hypotheses cumulating the highest number of votes is assumed to be the correct
match. Spatial information is used optionally to achieve higher performance rates or to
verify hypotheses.

A set of successful approaches was proposed combining probability theory and spatial
information of features. A framework for object category detection and recognition, which
combines both appearance and spatial locality of features in a probabilistic model, was
proposed by Fergus et al. [71]. In their approach salient regions are detected during a
training stage, and generative models for different object categories are learned. The
correct object category is determined by detecting features and evaluating the models
according to a maximum likelihood criterion.

A graphical overview about the multitude of other constellation models for incorporat-
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ing spatial information is given in the work of Carneiro and Lowe [43], together with their
own approach. They propose a model in which each feature is geometrically dependent
on its k nearest neighbors. This is based on the assumption that the local geometry of
features is more constrained than the global one and less likely to change severely.

Concerning the problem of efficient descriptor matching, Lowe used a kd-tree with
best-bin-first modification to organize SIFT descriptors from training images and to find
approximate nearest neighbors to the descriptors in query [142]. A post-verification step
is subsequently used for consistency checks and to confirm or reject matching correspon-
dences. A binary decision tree to index keypoints and to minimize the average time to
decision was used by Obdrzalek and Matas [254]. A few local image areas are represented
by the leafs of the tree and each inner tree node is associated with a weak classifier. Robust-
ness of their approach against partial occlusion, background clutter and large viewpoint
changes was shown on a database of multiple hundred objects.

Sivic and Zisserman first introduced the ideas from text retrieval into the area of
image matching [219]. As a visual analogy to a word they defined the vector quantization
of descriptors and introduced the inverted file mechanism to facilitate efficient retrieval.
By quantizing multiple descriptors into clusters using the k-means algorithm a visual

vocabulary is built and used for keyframe retrieval in videos. Consequently in the approach
of Nistér and Stewénius [167] hundred thousands of descriptor vectors are quantized using
k-means clustering in a hierarchical vocabulary tree for image retrieval, being capable of
organizing a database of 1 million images. The results of an initial scoring scheme are
verified by using the geometry of keypoints matched to further improve image retrieval
quality. Combining the ideas of vector quantization and hierarchical clustering results in
real-time behaviour of matching.

3.3.3 Notes

Local feature based approaches have attracted a lot of attention recently, as remarkable
results on large databases with a huge number of different objects were achieved. Especially
the introduction of tree structured databases for efficient matching has inspired a lot of
work in the direction of vocabulary trees and large databases.

Not only the robustness to occlusion and background noise, but also the possibility to
apply local features in large scale object recognition systems, using efficient storage and
management methods, has made local feature based approaches quite popular. Vocabu-
lary trees, together with a suitable combination of feature detectors and descriptors can be
seen as state-of-the-art in todays object recognition. Especially the modular design of cur-
rent object recognition systems, and the architecture of different local feature algorithms,
make them attractive for realization on embedded devices. We conclude that in the fore-
seeable future, the clever combination of an interest point detector and a descriptor will
definitely be part of any successful object recognition system, in order to deploy certain
object recognition capabilities in the area of household robotics, autonomous navigation
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and mobile computing. We are certain, that local feature based object recognition tech-
nology can serve as a key component in embedded system technology for a large variety
of applications, like public surveillance amongst others.

3.4 Special Approaches for Embedded Devices

In the last two Sections, we listed a large number of different algorithms from the field of
object detection and object recognition. However, it is rather obvious that only a small
set of algorithms is really suitable for implementation on embedded hardware. This fact is
also reflected by the, relatively small, amount of literature dedicated to the development
of high-level algorithms for embedded hardware.

In the following, we will list a representative number of approaches dedicated especially
to embedded systems. Note, that due to the ambiguous use of the terms detection and
recognition in the literature a clear boundary between both areas cannot be drawn.

3.4.1 Object Detection

For a long time object detection on embedded hardware was performed by primitive image
processing techniques, like background subtraction and morphological operations. How-
ever, due to the increase in computational and memory resources more evolved methods
have been proposed recently. This also implies that the trend in development is from the
detection of specific objects, eg. human faces by colour-based algorithms, to more generic
methods for detection of various objects through reconfiguring the basic algorithm. A
good example in this case is the Viola-Jones algorithm for detection of vehicles, faces or
other object types. However, there are only a few dominant domains in which detection
algorithms are benchmarked on embedded systems. These mainly include 1) human face
detection and 2) person and vehicle detection for surveillance purposes and in automotive
engineering.

In the first case the main reason is simply the (relatively) small variability in appear-
ance of faces and the large variety of applications in customer market. The motivation
behind pedestrian and vehicle detection in surveillance is simply the necessity to monitor
and actively control the traffic flow on todays transportation routes to decrease delays
and avoid incidents. Furthermore in the individual topic of automotive engineering the
motivation is simply the need for ”helping hands” as driver assistance systems due to the
considerable increase in traffic, vehicles, accidents and injuries respectively. Clearly there
is also a commercial motivation from the automotive industry driving the development in
this domain.

In the following, we give a short and fragmentary overview about the current state-
of-the-art on object detection on embedded hardware. We will also treat other object
detection methods that have been reported, mainly in the context of vehicle detection
from stationary cameras. To justify this, indisputably face and vehicle detection both
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have special relevance to surveillance and aspects of public security. For an extensive
overview about computer vision in the automotive domain the interested reader is referred
to the review of Sun et al. and the included references to other surveys and summaries
[226]. In the context of pedestrian detection in the autonomous domain, the interested
reader is referred to the work of Gavrila and Munder [82]. We will mainly summarize the
approaches here, that help to cover the variety of methods proposed yet.

We divide the methods proposed in the literature into two groups. The first group
contains the algorithms implemented in hardware, and the second group is the set of
approaches developed entirely in software. We believe, that the separation of algorithms
into these two groups helps to understand the basic differences in algorithm behaviour
and development.

3.4.1.1 Dedicated Hardware Solutions

McCready proposed a detector based on the Quantized Magnitude/Phase (QMF) trans-
form [148]. Using a total of 9 FPGAs the system is able to detect faces in 320x240 pixel
images at 30 fps. However, detailed evaluations on the detection rate are omitted. Pascha-
lakis and Bober proposed the FPGA implementation of a colour based face detection and
tracking system for mobile video conferencing [180]. The detection algorithm relies on a
statistical histogram-based skin colour model which is created offline and can be adapted
in a setup step. After assigning each pixel a probability for containing a facial colour a
simple segmentation algorithm is used to find connected components. Due to the focus
on mobile communication, the system is designed to run on 176x144 pixel QCIF images
and can theoretically perform at frame rates of over 430 fps. Another advantage is the
invariance to viewpoint, however, erroneously also detecting other regions of skin colour,
like human hands.

The implementation of a Radial-Basis Function (RBF) neural network in hardware
on a FPGA and a Zero Instruction Set Computer (ZISC) was proposed by Yang and
Paindavoine [269]. The network was built to detect and coevally recognize the faces
of persons. The performance of the FPGA and the ZISC implementation on the ORL
face database was 92% and 85% respectively. The implementations allow for processing
352x288 pixel images at 14 fps and 25 fps. Theocharides et al. reported the implementation
of the neural network based method proposed earlier by Rowley [201] in hardware on an
FPGA [240]. The solution is able to perform at 424 fps on 300x300 pixel images, achieving
about 75% of detection rate (compared to a time consumption of about 2 seconds per image
and 84 % detection rate using the software approach). Later Murali et al. proposed an
enhanced version being able to process 320x240 pixel images at 40 frames per second while
maintaining 94% detection accuracy [163].

Wei et al. [259] propose the implementation of the Viola-Jones detector for face de-
tection on an FPGA architecture. The system is able to process 120x120 pixel images
at 15 frames per second, however the performance of the system in terms of detection
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rate is only moderate. Yang et al. proposed the implementation of the Viola-Jones detec-
tor on an Altera Cyclone II FPGA for inclusion in handheld cameras or mobile phones
equipped with a camera module [271]. They propose to use a special method to early
discard subwindows which are unlikely to contain a face, in order to meet hard real-time
constraints and to achieve real-time performance. Although the method performs well, the
detection performance is still significantly lower than in the original approach proposed
by Viola and Jones [250]. The implementation of a full detection processor based on a
FPGA architecture was proposed by Hiromoto et al. [97]. In their approach an entire
classifier is divided into two parts where the separation threshold is determined by looking
on the amount of time spent in each stage during a usual sequential detection process. By
calculating weak classifiers of stages in the first part in parallel a significant speedup over
sequential execution can be achieved, allowing for real-time execution at 30fps on images
with 640x480 pixel resolution.

Nair et al. proposed a Viola-Jones person detector for indoor corridor scenes based on
JPEG compressed images using an FPGA [166]. The algorithm is working on 216x288 pixel
images corresponding to 3079 subimages and can process 2.5 frames per second. The main
contribution of this work is the method for approximation of the integral image, which
can be done from the DCT coefficients of the compressed image directly. This renders the
computation of the inverse transform to restore the uncompressed image unnecessary.

Cucchiara et al. reported the implementation of a vehicle detection and tracking system
on a GigaOps G800 Spectrum board [56]. The system is able to detect and track vehicles
at day- and nighttime using a total of 4 Xilinx FPGAs and 16 MB of RAM. The approach
is reported to work on full PAL resolution in real-time where the algorithmic core of the
implementation is a background differencing method. Kaszubiak et al. proposed the use
of disparity map calculation using a stereo camera setup in a car for vehicle detection
on highways [114]. By clustering fragments in the depth map the presence and distance
of a vehicle is determined, while the relative velocity is estimated by a Kalman tracking
step. Their system is a hardware and software co-design approach, consisting of an FPGA
which contains the entire depth map calculation as a hardware solution, and an ARM9
RISC processor running at 166MHz for clustering and Kalman filtering.

3.4.1.2 Algorithmic Software Solutions

Yang et al. proposed to approximate the oval shape of faces with an ellipse [270]. By
using a variant of the Hough transform and parallelizing the calculation process on two
TI TMS320C40 DSPs the detection of faces in 143x123 pixel images at 3.2 frames per
second was accomplished. Later, the implementation of a RBF neural network for usage
on a TI TMS320C62xx DSP was proposed by Yang and Paindavoine [269]. An average
throughput of 4.8 CIF frames per second is reported.

Fatemi et al. reported the implementation of a color based face detection algorithm on
the predecessor of todays WiCa platform [70, 122]. Skin colored blobs are detected based
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on a color space transformation and thresholding. False detections of skin colored regions
such as the human hands are discarded looking at the aspect ratio of the blobs. Various as-
pects about Viola-Jones detector implementation on SIMD architectures were first treated
by Reuvers [193]. While the use of separable filters for efficient feature computation is
proposed, more complex filters like Gabor filters are also evaluated. The approach is ded-
icated to run on a Xetal architecture and is reported to run at 4-5 frames per second on
640x480 pixel images on a TriMedia 1300 DSP based smart camera running at 133 MHz.
Jeanne et al. proposed the detection of faces on the WiCa platform by using a so-called
smooth edges technique and a stereo camera setup [108, 123]. In principle the approach is
based on edge detection in the horizontal and vertical direction and searching for locations
in the binary image where a predefined number of edges is present. Finally a validation of
the results is performed by comparing the results from both camera streams and forming
a final result. Wu et al. presented the implementation of a gesture recognition algorithm
on the WiCa platform [268]. After background subtraction, the k-means algorithm is used
to find dominant color modes. Ellipses are fitted to segmented color regions which are the
extremities of the actor. By combining the ellipse information from multiple cameras an
articulated 3D skeleton model is animated.

Bramberger et al. proposed a smart camera platform based on a TI TMS320C6416
DSP [33, 30]. The plausibility of the solution was demonstrated using a background
modeling algorithm in a tunnel environment for the task of stationary vehicle detection.
Chiu et al. proposed an embedded vision system based on a CMOS imaging chip and
a RISC processor in order to perform real-time car counting [47]. The entire system
consists of a network of 13 embedded vision platforms that are applied to monitoring and
controlling the access to a parking facility. The system is mainly based on detection of
markers and their occlusion through passing vehicles. It is able to perform at day and
nighttime and can operate at 30 fps on 320x240 pixel images. Mathew et al. performed an
evaluation of various nameable algorithms like the Rowley [201] and the Viola Jones [250]
face detectors to gain insight into the suitability of these algorithms for implementation in
the embedded domain [146, 147]. Although the study contains not an explicit evaluation
of any algorithm in terms of detection performance, important aspects of the caching
strategy inside a system and potential ways of parallelism are discussed. Rahimi et al.
deployed an object detection algorithm on their Cyclops smart camera platform [190]. The
algorithm is based on background modeling using a moving average technique and is able
to perform at about 4 frames per second on 128x128 pixel frames. Yeh et al. [275] proposed
a background subtraction based approach as preprocessing step on a mobile phone. Only
the segmentation step is performed, the object information is sent to a central server for
further processing.
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3.4.2 Object Recognition

Object recognition is a much more inexperienced field of development in the context of
embedded systems. In contrast to the field of object detection, recognition methods have
been limited to very specific object categories and dedicated applications. Only a few
areas of research exist, like character recognition for industrial environments or mobile
devices [15], gesture recognition [190], but also for license plate recognition in the area of
surveillance [21, 112, 140]. Another example is the automotive domain where algorithms
have been proposed for sign or obstacle detection [69], or the recognition of human faces
in biometric systems [18, 19, 269], which often perform both detection and recognition
coevally. However, in the case of vehicle recognition or reacquisition the approaches are
merely limited to license plate reading, which itself is based on the use of SVMs and
neural networks. There simply exists no comparative work in the domain of generic object
recognition on embedded systems, thus the following collection of related publications is
fragmentary and diverse.

In the following we will especially treat related work in the context of face recognition
on embedded systems to show that the main types of algorithms, that have been deployed
yet, are based on learning methods and/or subspaces. We also refer to recognition systems
based on other algorithms that have been proposed for diverse applications and describe
what is the current state-of-the-art in recognition.

3.4.2.1 Dedicated Hardware Solutions

Regarding the area of local features, Benedetti and Perona proposed the implementation
of the Harris corner detector [91] on a GigaOps G800 Spectrum board using six Xilinx
FPGAs [23]. The system is able to run in real-time on 320 x 240 pixel images. Another
implementation on a Spartan-3 FPGA was proposed by Giacon et al., whose system is
able to run at 512x512 pixel images at 46 frames per second [85].

Se et al. denote the implementation of Lowes SIFT for autonomous robot navigation
on an Virtex II Xilinx FPGA [212]. However, details about the implementation and de-
sign of the system are not public, although they claim to extract features from a 640x480
pixel image in about 60 ms, compared to about 600 ms for a Pentium III 700MHz proces-
sor. Recently Cabani and MacLean proposed a pipeline architecture for implementing a
multi-scale Harris corner detector on an Altera Stratix S80 FPGA [39]. Candidate points
are fed into an iterative procedure to determine the local affine shape of the features
neighborhood and to achieve affine invariance. Although the design and occupancy of di-
verse parametrized versions of the algorithm on FPGAs is outlined in detail, experimental
results in terms of detection rate and throughput are omitted.
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3.4.2.2 Algorithmic Software Solutions

Following the approach of Turk and Pentland [244] Batur and Flinchbaugh built a system
based on a TI TMS320C6416 DSP running at 500Mhz [18, 19]. The system needs about
3.7 seconds to detect and recognize a face in a 640x480 pixel image. However, two different
approaches in the face classification stage were evaluated, achieving 88% and 93% success
rate respectively. Yang and Paindavoine built a detection and recognition system based
on a RBF neural network for usage on a TI TMS320C62xx DSP [269]. The system is
able to recognize and track 10 different persons at 4.8 fps on 352x288 pixel images and a
recognition rate of 98.2 % on the ORL database is reported. Fatemi et al. presented an
RBF neural network implementation for face recognition on the predecessor of the WiCa
platform, at that time using a Trimedia DSP running at 166 MHz [70, 122]. Based on a
database of 5 known faces the algorithm is able perform at recognition rates between 90%
and 97% depending on the parametrization and needs 4.2ms to recognize a single 64x72
pixel face image. Wei and Bigdeli reported the implementation of a face detection and
recognition system based on an Analog Devices ADSP-BF535 EZ-KIT LiteTMplatform
featuring a Blackfin DSP running at 300 MHz [258]. A neural network is used for detec-
tion and recognition and the authors emphasize the special computational burden during
detection and the considerable memory consumption during the recognition step, omitting
detailed evaluations concerning the recognition performance. Günlü proposed the the use
of a TI TMS320C6713 floating point DSP and a neural network classification of DCT
coefficients [88]. Though the goal of the work is to find the optimal cache parameters for
DSP configuration detailed evaluation results are omitted. The nice contribution of the
approach is that training was performed on the development board and not on a usual
computer, however, with only a small database.

Estevez and Kehtarnavaz [69] built a system to detect and recognize three different
road signs using a Texas Instruments TMS320C40 DSP for a driver assistance system.
Their approach is mainly based on color edge detection and using a special filter mask to
scan over an image coevally accumulating edge pixel information. Ortmann and Eckmiller
[173] built a real-time capable system for detecting and recognizing objects on a Texas
Instruments TMS320C50 DSP running at 80 MHz. However, a big part of their work
was focused towards integrated camera control, thus a detailed description of the methods
involved and evaluations of recognition performance on their 58 object database were
omitted.

Using a modified kd-tree for efficient feature vector organization was proposed by
Bishnu et al. [24]. An object database is built from so-called Euler vectors which are
calculated from binary forms of object images. While an implementation and evaluation
on hardware is not performed explicitly, the design of a hardware system and a pipelining
structure is motivated in the work of Bishnu et al. [25] and Dey et al. [62].

Recently Munich et al. built a library around Lowes SIFT which has already been
applied in several commercial products [162]. However, although they have implemented
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a full-scale object recognition system on DSPs and other platforms, details about imple-
mentation issues and performance evaluations are omitted.

Rahimi et al. reported the implementation of a gesture recognition algorithm on their
Cyclops hardware system [190]. The system can differentiate 5 different gestures from the
American Sign Language (ASL) at about 2 frames per second and 92 % of recognition
rate.

3.4.3 Notes

The literature available on object detection and recognition algorithms for embedded sys-
tems is very limited to special applications. High level algorithms for object detection,
such as the Viola-Jones algorithm, have been investigated rarely in the past. However, the
large amount of research done in the area of Boosting and the development of powerful
approaches strengthens our assumption, that this type of algorithm is a suitable choice
for closer investigation in the context of embedded systems.

In the context of object recognition, since the rise of local feature based methods, there
is a clear trend towards the implementation of filter-based algorithms in hardware, such as
the Harris detector [23] or the SIFT approach [212]. Clearly, algorithms, which are data-
independent in large parts, are very suitable for this type of implementation. The need for
certain object recognition capabilities in smart cameras requires the implementation of a
robust and high performant module for object recognition. Consequently, we assume that
this methodology is also the right choice for building a generic object recognition system
on an embedded device.

3.5 Algorithm Selection Criteria

To summarize the most prominent and popular algorithms for object detection and recog-
nition, there is a large set of algorithms which have been proposed in the literature. Only a
few algorithms have turned out to be suitable in the context of surveillance. Moreover, the
selection of algorithms for smart cameras is rather difficult due to the restrictive nature
of embedded hardware. Hereafter, general aspects concerning algorithm development and
embedded systems are discussed. Subsequently, we revisit the main task to be solved in
our thesis, ans give a justification and explanation of our choice of algorithms.

3.5.1 Embedded System Aspects

Since the development of smart cameras is a relatively young field of activity, literature
about computer vision on smart cameras in a general context is only rarely available.
Due to the restrictive nature of embedded hardware most of the existing approaches are
based on rather primitive image processing techniques. Especially triggered by dedicated
conferences on embedded computer vision [67, 68, 106], also more evolved methods are
introduced into the area of smart camera development recently.
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(a) (b)

Figure 3.6: (a) Detecting cars in images. (b) Recognizing a specific one as seen previously.

One important aspect of the survey of methods is, that pure hardware implementa-
tions of algorithms feature much higher performance in throughput over software based
solutions. However, one crucial property of implementations in hardware is that this im-
provement in speed is mostly achieved by sacrificing a significant amount of performance
in terms of detection or recognition accuracy. Although this effect has diminished re-
cently due to the improvement in development tools for hardware implementations and
the increasing reconfigurability of typical hardware solutions like FPGAs, this trend is
still prevalent. This also means, that DSP or SoC based solutions have the additional
striking advantage, that they can deliver high accuracy and performance. Even if real-
time capabilities are not present first, however, an approximated prediction of the time of
meeting real-time constraints can be given following Moore’s law. Nevertheless, innovation
in hardware design and development tools that get constantly better justify the usage of
flexible solutions for rapid prototyping of vision algorithms in the domain of embedded
systems.
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3.5.2 Detection and Recognition on our Smart Camera - Thesis Goals

Revisited

To recapitulate and redefine the main tasks of this thesis, we want to investigate the suit-
ability of the currently top-performing algorithms in object detection and object recogni-
tion in the context of DSP-based embedded platforms. Without loss of generality, we do
this given some specific tasks from the area of traffic surveillance. As an example, consider
the task of object detection and recognition in the following scenario.

In Figure 3.6 (a), two time-separated images from two cameras on parking lots are
depicted. Both images are taken from smart cameras, so there is no centralized processing
engine available, but the data is processed at site using the DSP-based platform described
previously.

The first task is to localize all cars in the upper and lower image in (a). Needless to
say, that this task is done on each smart camera independently and there is no flow of
information between individual cameras. After detection of the individual vehicles, the
recognition task is to find out, if the object in the lower image in (b) was already seen
previously in the upper image of (a), which coevally means, that one car has been sighted
at both parking lots at different times of day. To state in an more general context, the
recognition task can also be defined as finding out, where this individual vehicle has been
sighted previously, given a set of vehicle observations at different locations and different
times of day. This implies that a certain amount of communication between individual
smart cameras is necessary.

We emphasize, that we do not explicitly discuss issues of entire camera networks in
this thesis. Our main focus is on the investigation of state-of-the-art algorithms on stand-
alone DSP-based smart cameras. However, it is clear that our work is also influenced by
several aspects of smart camera and visual sensor networks. Thus we also use dedicated
applications from these areas as examples to justify several of our own design choices
and evaluate our algorithms. In the context of object recognition, note that we do not
take license plate information into account, but, as a prerequisite, rely on appearance
information of objects, or parts of objects, only. Neither do we take information about
the geometry of objects into account. Moreover, as a special aspect of smart cameras, we
emphasize, that a special goal of our investigation is the possibility to compress data as
much as possible, without loosing too much information. It is rather obvious, that this
is necessary due to the restricted amount of memory resources available, and the high
cost of data transmission between individual smart cameras. This is an important aspect,
because efficient data transmission is also a major point of investigation in recent work on
smart camera networks [179, 217].



The best car safety device is a rear-view mirror
with a cop in it.

Dudley Moore

English movie actor & musician, 1935 - 2002

Chapter 4

Object Detection

O
bject Detection denotes the process of determining the presence of a single or
multiple objects and locating them. Needless to say, that object detection is a
task which is of major importance, because object detection forms the first step

of a larger setup for surveillance. A lot of different object detection approaches were pro-
posed in the literature in the past, which are based on different assumptions and were
proposed for different scenarios. Many approaches are very interesting because of their
high robustness and high performance in terms of accuracy. However, often the advantages
of these approaches are based on computations with high complexity and demanding re-
quirements on the infrastructure in terms of computational and memory resources. Hence,
it is rather obvious, that for applications with high demands on reliability, strongly limited
resources and real-time constraints, only those approaches are suitable, that offer a certain
amount of robustness, are applicable in various different scenarios, and are applicable for
a reasonable computational effort. In this respect, mainly methods are considered, which
allow trading computational effort against accuracy and performance in terms of speed.
Under this perspective, the large number of methods proposed in the literature shrinks to
a rather small number of interesting approaches.

As a reformulation of the term ”object detection” in terms of a pattern recognition
task, the goal is to find a classifier, which separates the group of objects to be detected
from the huge set, formed by the overwhelming majority of objects that are not subject of
interest. This set can also be described as ”everything else but the object”, respectively.
An important question is, how such a classifier is applied in a given algorithm. One method
is the use as a verification step, where a preliminary result is tested to be confirmed or
revoked. The main requirement for such a classifier is high accuracy. Compactness in
representation and being computable in a fast way is less important, because the classifier
is mostly applied on a small group of already available results. An other method of using
a classifier is the application in an exhaustive manner. This is mainly performed in sliding
window and scanning approaches, where a very large number of input samples has to be
classified in a very short time interval. In this case other demands are made on the nature of
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a classifier. The main requirements are the compactness in representation and, moreover,
the possibility to calculate a single result extremely fast. This is necessary, because in
scanning approaches efficiency can only be reached, if classification results of individual
input samples can be delivered rapidly. In this respect, object detectors, which are based
on exhaustive search, have to be based on classifiers, which can be computed quickly. In
the context of object detection on embedded systems, compactness in representation is also
of major importance, as the issue of limited computational and memory resources states a
strict limitation on the properties of the method used. This is also a reason, why learning
based object detectors have only been rarely deployed on smart camera platforms yet.

In the following, we will discuss the task of object detection in the context of DSP-
based embedded systems, where we focus on the latter method of using a classifier, the
exhaustive way. After some introductory notes, we focus on the realization of a particular,
representative and popular approach from the available set of methods proposed recently.
First, some theoretical background of the approach is given in Section 4.2, followed by a
description of the methods for the rapid calculation of features, the training and the de-
tection step of the approach in Sections 4.3 and 4.4, respectively. A conceptual evaluation
of the entire algorithm is given in 4.5. In Section 4.6, we investigate several aspects of
algorithm realization in the context of our prototypical DSP-based embedded platform.
Finally, the Chapter closes with some concluding and summarizing notes in Section 4.7.

4.1 Introduction and Motivation

There is a long list of features, which are desirable for a general object detection
algorithm. First of all, it is important that the approach delivers results with high
accuracy and a low number of false alarms. Furthermore, the effort to set up a detector
for a given object class and scenario must be reasonable. As already stated before, a
detector should be able to discriminate between the object class and everything else
but this group. Such a generic detector would be applicable in any scenario without any
additional effort. Indeed, describing the space of all possible negative examples given only
a small group of objects of interest is impossible. Thus, it is also impossible to build a fully
generic detector. Though, the natural way is to build a detector, which can discriminate
the object class from all possible samples, which are likely to occur during application
of the detector. To allow for large scale application of such an algorithm, the building of
detectors should be possible in an adequate amount of time using a moderate amount of
resources. Finally, real-time capabilities under predefined environmental conditions are
inevitable, to make the approach a reasonable choice for inclusion into a larger framework.

Because of the prerequisite of the method to work under different environmental
conditions, approaches which have some setup or training stage are quite suitable choices.
This mainly refers to the list of approaches, summarized previously in Sections 3.2.2 and
3.2.3 of Chapter 3. Appearance based methods have been proven to be advantageous
in this respect. First, encoding algorithms for capturing the appearance of an object
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class are very efficient. This means that object specific visual features can be described
very well, very fast and in a very compact form. Even more important, compared to
approaches based on other features, appearance based object class representations can be
built for a large number of different object categories, which also allows for applications
in many different domains.

However, it is clear, that training a classifier is a complex task, subject to both,
high computational effort and problematic selection of examples and counter-examples.
Moreover, the complexity of building a good detector increases with the variability of the
objects, and becomes harder and harder with the increase of intra-class variation. Thus
it is necessary to choose algorithms, which can cope with a certain amount of noise, offer
robustness and adequate performance, and are still able to perform at real-time. One of
the most promising approaches in this respect is the Boosting based detection framework
of Viola and Jones, dating back to 2001 [250]. The detector is based on the efficient
calculation of features and the cascaded structure of the classifier, which is applied to
classify subwindows of images exhaustively. The approach forms a nice framework for
object detection in real-time and has been shown to perform well in a large variety of
applications and scenarios. Therefore, it is treated as ”the” state-of-the-art algorithm
for object detection and discussed closer in the following.

Since the initial proposal of the Viola-Jones algorithm, a large amount of referred
work was published, dealing with different aspects and applications of this method. The
approach was successfully deployed in a big number of tasks, such as face, vehicle or
pedestrian detection, just to mention a few areas with special relevance to surveillance.
Moreover, a few main problems of the original approach were targeted and, at least
partially, solved since. As an important example, a large variability in object appearance
enforces detectors to be based on a large set of classifiers and complex features. In turn,
this results in increased computational complexity and leads to a significant slowdown
of the detectors. Recently, approaches have been proposed, especially targeting this
problem, such as the feature sharing approach of Torralba et al., which is based on
combining stumps of boosted classifiers [242]. Such ideas can be used to speed up
the detectors again and to keep them applicable under real-time constraints. One can
summarize, that the Viola-Jones detector is steadily growing in its capabilities to detect
various different object classes. Furthermore, its performance is continuously improved
both, in terms of detection accuracy and in terms of execution speed.

The Viola-Jones detector can be denoted as state-of-the-art in object detection.
Because we feel confident, that this algorithm will also play a vital role in the development
of object detection systems in the foreseeable future, a closer investigation of the
algorithm in the context of smart cameras is motivated. Especially the study of several
aspects, such as detection performance in terms of accuracy and temporal behaviour,
given restricted amounts of computational and memory resources is of major importance.
In the following, we introduce our approach and investigate it in detail to gain knowledge
about its capabilities and the problems in realizing it on DSP-based embedded systems.
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4.2 Algorithm Principles

The Viola-Jones detector is based on two major parts. The first contribution is the use
of a Boosting algorithm for combining weak classifiers. The organization of the classifiers
in multiple closed cascades and the use of bootstrapping for generating a suitable set of
training images is proposed. The second part deals with the efficient computation of weak
features and classifiers, which can also be calculated rapidly during detection.

In the following the Boosting concept, together with the formation of cascades is
introduced. Thereafter the basics for rapid calculation of features is described. Lastly,
the training process for generating the final detector is outlined, together with aspects of
scale-invariant detection and scanning.

4.2.1 The Boosting Concept

The nomenclature Boosting was first mentioned by Kearns [116] and was later introduced
officially by Kearns and Valiant [117]. Basically, Boosting denotes a framework to improve
general learning algorithms. Given a set of learning hypotheses, which perform only
slightly better than random, the basic principle of Boosting is to combine several of these
weak classifiers into one single strong classifier. While the first algorithm in closed form,
proposed by Schapire, had polynomial running time [205], a more efficient version was
developed by Freund [75], however, still suffering from some problems in practical use.

The first practical approaches were proposed as ”Adaptive reweighting and

combining” (Arcing) by Breiman [35], and the ”Adaptive Boosting” (AdaBoost)
algorithm by Freund and Schapire [77]. Breiman also introduced a related method called
”Bootstrap aggregating” (Bagging) [34], which is often used nowadays to improve the
performance of complex classifiers, such as neural networks or decision trees.

A lot of other boosting approaches have been proposed since then. A few examples
are the Gentle AdaBoost by Schapire and Freund [206], the LogitBoost by Friedman et

al. [78], and the BrownBoost, presented by Freund [76]. Of special relevance in this thesis
is the RealBoost algorithm, proposed by Schapire and Singer, which is a modification of
the classical AdaBoost algorithm to use confidence rated predictions [208]. A introductory
description of Boosting can be found in the work of Meir and Rätsch [149].

4.2.2 AdaBoost

The first practically usable approach was introduced by Freund and Schapire [77] and de-
noted AdaBoost. We mainly follow their notation in the following outline of the algorithm,
which is also given in the thesis of Leistner [134].

To capture the main idea of AdaBoost, consider a set of training samples
S = 〈(x1, y1), . . . (xm, ym)〉, where each xi belongs to some domain or instance space X ,
and each label yi stems from a set of discrete labels Y = {−1,+1}, denoting a positive
and a negative set respectively. A distribution of weights wi is maintained, assigning



4.2. Algorithm Principles 75

Algorithm 1 AdaBoost
Given: M training samples 〈(x1, y1), . . . , (xM , yM )〉 where xi ∈ X , yi ∈ Y = {−1,+1}

Initialize D1(i) = 1
M ∀i ∈ [1,M ]

for t = 1, . . . , T do
• Normalize weights wi so that Dt is a probability distribution

wt,i =
wt,i∑M
k=1wt,k

∀i ∈ [1,M ]

• Train weak learner using the distribution Dt

• Get weak hypothesis hweakt : X → {−1,+1} with error

εt = Pri∼Di [h
weak
t (xi) 6= yi]

• Break if εt = 0 or εt > 1
2

• Choose αt = 1
2 ln
(

1−εt
εt

)
• Update:

Dt+1(i) = Dt(i)×

{
e−αt ifhweakt (xi) = yi
eαt ifhweakt (xi) 6= yi

= Dt(i) exp(−αt yi hweakt (xi))

end for

The final hypothesis results as:

hstrong(x) = sign

(
T∑
t=1

αt · hweakt (x)

)

each sample i a specific weighting factor. This distribution is altered in each round t of
Boosting and denoted as Dt(i), where, again, i is the training example.

As a first step, weak classifiers hweakt (x) have to be found with an accuracy greater
than 50%, whereas a weak classifier has to draw a decision on the examples xi as

hweakt (xi) :→ {−1,+1}. (4.1)

The resulting classification error εt can be calculated according to equation 4.2 as a sum
of the individual weights of all misclassified samples:

εt = Pri∼Di [h
weak
t (xi) 6= yi] =

∑
i:hweak

t (xi)6=yi

Dt(i) (4.2)
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Note, that there is no need to use a special algorithm for the weak learner. Alternatively, a
subset of the training data can be sampled according to Dt, which is then used for training
the weak learner, without special weighting of individual samples. After learning a weak
hypothesis and calculating its error εt, the classifier hweakt is convexly combined into the
strong classifier hstrong using a parameter αt, which is computed from the error εt. This
inclusion into the final strong classifier hstrong is denoted in equation 4.3:

hstrong(x) = sign

(
T∑
t=1

αt · hweakt (x)

)
(4.3)

In Algorithm 1, which is taken from [134], the AdaBoost algorithm is summarized.
First, each training example (xi, yi) gets an initial weight wi. In each round t, the weights
have to be normalized to form a probability distribution Dt. Using this distribution, a
weak classifier hweakt (x) is computed and is evaluated with respect to its classification
error εt. The parameter αt is calculated reciprocally from the error, which means that
the weighting of the weak classifier hweakt (x) increases with a decreasing error epsilont.
The algorithm is stopped, if the error is larger than 50%, or, alternatively, if the error is
zero. This equivalently means that all training examples are classified correctly. Finally,
the distribution Dt+1 is updated by reweighting the training examples. The weights of
correctly classified examples are decreased, and the weighting of misclassified samples is
increased. These can be examples, which are close to the decision boundary and are, thus,
hard to classify. By increasing their weights, special importance is focused on classifying
them correctly in the next round.

Training and Generalization Error Freund and Schapire have shown, that the train-
ing error of hstrong decreases exponentially fast with the number of weak classifiers [77].
First, assume, that for all weak classifiers hweakt=1...T , the error εt ≤ 1

2 − γ for some γ > 0.
Furthermore, note that γt = 1− εt can be denoted as the superiority of a given weak clas-
sifier hweakt over deciding randomly (50%). Then, the training error of the strong classifier
hstrong can be bounded to

Pr(x,y)∼S [hstrong(x) 6= y] ≤
∏
t

[
2
√
εt(1− εt)

]
=
∏
t

√
1− 4γ2

t ≤ exp

(
−1
∑
t

γ2
t

)
.

(4.4)
Note that equation 4.4 states the fundamental proof, that AdaBoost is able to convert
several weak learners into a strong classifier. Moreover, if γ is known in advance, an
exponential decrease in the probability can be achieved by slightly modifying the algo-
rithm. However, gathering a priori knowledge of γ is difficult in practice, hence this is of
theoretical interest mainly.

Not only the training error, but also the generalization error is important to be in-
vestigated. With high probability, the generalization error of hstrong is bounded to the
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training error, as indicated in equation 4.5 given in [77]:

Pr(x,y)∼D[hstrong(x) 6= y] ≤ Pr(x,y)∼S [hstrong(x) 6= y] +O

(√
T · d
m

)
(4.5)

In this formula, m denotes the sample size, T denotes the number of weak classifiers (or
boosting rounds, respectively), and d denotes the Vapnik-Chervonenkis dimension (VC-
dimension). The VC-dimension was introduced by Vapnik and Chervonenkis as a standard
measure of the ”complexity” of a space of hypotheses [247].

Early experiments have shown empirically, that boosting most times does not overfit,
although this bound suggests that. Moreover, in some cases the generalization error tends
to be further decreased, although the training error has already reached zero, which is also
in opposition to the upper bound defined in 4.5. A closer explanation of this phenomenon
by using the margin theory is given by Schapire et al. [207]. The margin of an example
(x, y) is a number in [−1,+1], which is some kind of ”distance” from the decision boundary
calculated as

margin(x, y) =
y
∑T

t=1 αt h
weak
t (x)∑T

t=1 αt
. (4.6)

The magnitude of the margin can equivalently be interpreted as confidence value of the
prediction. As the margins on the training set increase, the upper bound on the general-
ization error is improved. This is described in equation 4.7:

Pr(x,y)∼D[hstrong(x) 6= y] ≤ Pr(x,y) S [margin(x, y) ≤ θ] +O

(√
d

m · θ2

)
(4.7)

Note, that the number of iterations T has no influence for an arbitrary threshold θ > 0.

4.2.3 RealBoost

RealBoost is an improved boosting algorithm based on the work of Schapire and Singer
[208]. In the following, we mainly follow their remarks.

The main modifications are, that the outputs of weak classifiers are real values, com-
pared to discrete values in AdaBoost, and that αt is treated independently from εt. More-
over, the idea of confidence-rated predictions is introduced, which makes the algorithm
converge faster during training.

To describe the RealBoost algorithm in detail, remember, that the goal of the weak
learning algorithm in AdaBoost is to learn a weak hypothesis hweakt over a given distri-
bution Dt with a small error εt. As indicated above, an approach to minimize the upper
bound on the training error is to minimize the so-called loss-function Zt in each round.
This basic idea is useful as a general criterion for the choice of a weak hypothesis hweakt ,
where the formulation is given in equation 4.8, assuming that αt might be chosen arbitrary:

Zt =
∑
i

Dt(i) exp(−αt yi hweakt (xi)) (4.8)
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αt can be folded into hweakt and can, basically, scale a weak hypothesis by a constant
factor in R. Under this assumption, Schapire and Singer have shown, that Zt has direct
impact on the training error, and that the upper bound of the training error of a strong
hypothesis hstrong can be given by,

1
m
|{i : hstrong(xi) 6= yi}| ≤

T∏
t=1

Zt. (4.9)

Domain partitioning weak hypotheses and prediction smoothing To make the
approach more powerful, the weak learner can be adapted to better suit the general math-
ematical concept of Boosting by folding αt into the weak learning algorithm. Though we
are dealing with a 2-class problem, i.e. j = 1 denoting the object class and j = 2 denoting
the non-object class, each weak hypothesis can be associated with a partition of X into
disjoint blocks Xj . The collectivity of Xj with j ∈ {1, 2} covers all of the instance space
X , for which hweak(x) = hweak(x′) for x, x′ ∈ Xj . The prediction of h depends only on
which block Xj a given instance falls into.

To recapitulate the main modification of RealBoost over discrete AdaBoost, the initial
prediction form hweakt : X → {−1,+1} is changed to the prediction space hweakt : X → R,
where the sign of hweakt still indicates the class membership, and the magnitude |hweakt (x)|
now denotes the confidence of this prediction. Supposing cj = hweak(x) for x ∈ Xj , the
goal is now to find proper choices for cj . Again, given a one-dimensional problem, in
principle one threshold ϑ, splitting the two domains X1 and X2, has to be determined.
Moreover, just two values c1 and c2, have to be determined. These values are later denoted
as alpha (α) and beta (β).

Let b ∈ {−1,+1} denote the labels of classes. For j ∈ {1, 2}, the weighted fraction
of examples which fall in block j with label b can be written as

W j
b =

∑
i:xj∈Xj∧yi=b

D(i) = Pri D[xi ∈ Xj ∧ yi = b] (4.10)

The original loss function of the discrete AdaBoost algorithm, given in equation 4.8, can
be rewritten as

Z =
∑

j ∈{1,2}

∑
i:xi∈Xj

D(i) exp(−yi cj) =
∑

j ∈{1,2}

(
W j

+e
−cj +W j

−e
−cj
)
. (4.11)

Z reaches a minimum at y

cj =
1
2

ln

(
W j

+

W j
−

)
, (4.12)

which leads to a further simplification of 4.11:

Z = 2 ·
∑

j ∈{1,2}

√
W j

+ ·W
j
− = 2 ·

[√
W 1

+ ·W 1
− +

√
W 2

+ ·W 2
−

]
(4.13)
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For numerical stability, Schapire and Singer [208] suggest to smooth the values cj by
including the error ε into the calculation, most commonly as ε = 1

M with M being the
number of training examples. Including epsilon may be necessary, because accidentally
W j

+ and W j
− can become very small or even zero. This results in very large or infinite cj ,

which, in turn, causes numerical problems. This limiting of the predictions magnitudes is
formulated in equation 4.14:

cj =
1
2

ln

(
W j

+ + ε

W j
− + ε

)
(4.14)

Since W j
+ and W j

− are bounded between 0 and 1, |cj | can be bounded by the following
equation 4.15:

1
2

ln
(

1 + ε

ε

)
≈ 1

2
ln
(

1
ε

)
(4.15)

The main advantage of RealBoost over the discrete AdaBoost algorithm is its faster
convergence during training. This makes it more applicable in practice, because the train-
ing phase can be stopped after fewer iterations. The algorithm is summarized in Algorithm
2, and a similar description can be found in the work of Wu et al. [265] or in the master
thesis of Kálal [111].

4.2.4 Cascaded Classifiers as Object Detectors

Without going too much into detail, we will formulate the principal ideas of the object
detection concept here. This is the first main contribution of the work of Viola and Jones,
the organization of multiple strong classifiers in a cascaded structure in order to perform
fast classification of samples [250].

A strong classifier is a linear combination of T weak classifiers, which contain a thresh-
old θ and a parity value p to form a classification boundary on a feature ft(x). A weak
classifier using RealBoost can thus be formulated as

hweakt (x) =

{
α if pt · ft(x) < pt · θt
β otherwise

α, β ∈ R. (4.16)

Likewise, the structure of a single strong classifier hstrongk (x) is defined as

hstrongk (x) = sign

(
T∑
t=1

αt · hweakt (x)−Θk

)
, (4.17)

where the threshold Θ is used to steer the classification performance of the single stage.
A classifier cascade is composed of K strong classifiers with increasing classification

power, which are linked in sequential stages. During classification, samples have to pass
the cascade stagewise, while an intermediate classification result is available after each
stage k = 1 . . .K, or single strong classifier hstrongk respectively. Samples, which obtain a
positive classification result in stage k, are passed to the next stage k + 1, while those,
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Algorithm 2 RealBoost for Two-Class Problems
Given: M training samples 〈(x1, y1), . . . , (xM , yM )〉 where xi ∈ X , yi ∈ Y =
{−1,+1}, L weak learners
Initialize D1(i) = 1

M ∀i ∈ [1,M ]
for t = 1, . . . , T do
• Normalize weights wi so that Dt is a probability distribution

wt,i =
wt,i∑M
k=1wt,k

∀i ∈ [1,M ]

for l = 1, . . . , L do
• Train weak learner with feature f using the distribution Dt

• For b ∈ {−1,+1} and j ∈ {1, 2}, calculate

W j
b =

∑
i:xj∈Xj∧yi=b

D(i) = Pri D[xi ∈ Xj ∧ yi = b]

• Determine threshold θ with minimal Z

Z = 2 ·
2∑
j=1

√
W j

+ ·W
j
−

• ∀i ∈ [1,M ], set the output of hweak(xi) to

hweak(xi) =

 α = 1
2 ln

(
W 1

++ε

W 1
−+ε

)
if f(xi) < θ

β = 1
2 ln

(
W 2

++ε

W 2
−+ε

)
else

with ε = 1
M being a small positive number.

end for
• Select weak learner hweakt with smallest Z
• Update:

Dt+1(i) = Dt(i)e−yih
weak
t (xi), ∀i ∈ [1,M ]

end for

The final hypothesis and the confidence value result as:

hstrong(x) = sign

(
T∑
t=1

hweakt (x)

)
Conf(hstrong(x)) =

∣∣∣∣∣
T∑
t=1

hweakt (x)

∣∣∣∣∣
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obtaining a negative result, are discarded as negatives immediately after the stage. For
object detection this means, that the majority of samples, which correspond to the non-
object or background class, can be discarded very fast. More complex samples like highly
textured patches, which are hard to distinguish from the object class, survive the leading
cascade levels and are classified by more complex classifier stages. The basic detector
structure is also depicted in Figure 4.1.

Figure 4.1: Cascaded structure of the object detector. After each stage, the negatively classi-
fied samples are discarded and the positively classified samples are forwarded to the next stage.
Samples, reaching the end of the cascade are classified as objects.

In principle, the strength of a strong classifier related to a given training set is fixed
by putting a threshold on the classification performance to achieve. If the threshold is
reached, the strong classifier is finalized and treated as a single stage. The training set
is refilled to contain only examples, which have passed the former stages and have been
assigned a wrong label erroneously. This results in a more challenging training set for the
next stage, and, consequently, in an increase in classifier complexity from stage to stage.
The procedure of refilling a training set with negative examples on the basis of former
classification results is also known as bootstrapping and was first mentioned by Sung and
Poggio [227].

For object detection using the classifier cascade, it is of special importance that positive
and negative examples are treated differently in terms of their classification accuracy.
This means, that it is more important to classify positive examples as positives, as to
classify negative examples as negatives. The reason for this is rather obvious. A false
classification in the first case leads to an irreversible loss of the sample and to a bad
detection performance consequently. In the latter case, the sample is simply passed to
the next stage, where it will possibly be correctly discard. In other words, the cascade
building procedure has to be conservative about treating examples, focusing on keeping
positives even if unsure.

To formulate this, each stage k has a minimum detection rate dk and a maximum false

positive rate fpk. Both rates are determined and set as training parameters. The overall
detector performance for a K-stage classifier cascade is measured as overall detection rate

D and the overall false positive rate FP , and calculated as products of the real rates in
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the individual stages to

D =
K∏
k=1

dk and FP =
K∏
k=1

fpk. (4.18)

To achieve a detector with a high detection rate, the minimum detection rate d of the
stages has to set to a very high level, in order not to miss correct detections. In contrast,
the false positive rate fp has to be set to a significantly smaller value, to allow FP to
decrease much faster than D.

4.3 Rapid Feature Calculation

The second important contribution to allow for real-time performance of the detector is the
proposal of an intermediate image representation. The basic idea of the so-called Integral

Image originally stems from a work of Crow on texture mapping [55]. The mathematical
foundation behind was described later in the work of Heckbert [92], and can also be found
in the work of Simard et al. [216]. In the following, the basics for calculating the integral
image are repeated first. Then we describe the set of features for fast calculation of
features, and weak classifiers respectively.

4.3.1 Integral Image

The Integral Image was first introduced by Crow in the context of texture mapping and
called Summed Area Table [55]. It is defined to be the sum of all pixels to the left and
above the current position. The value of the integral image ii at location (x, y) is defined
as

ii(x, y) =
∑

x′≤x,y′≤y
i(x′, y′) (4.19)

with i(x, y) being the original value of the input image at the same location. The integral
image can be calculated in one pass over the entire image, using the preliminary settings

s(x,−1) = 0 and ii(−1, y) = 0 (4.20)

and the following two recursions:

s(x, y) = s(x, y − 1) + i(x, y) (4.21)

ii(x, y) = ii(x− 1, y) + s(x, y) (4.22)

The basic idea is also depicted in Figure 4.2. The integral image is used to calculate
any rectangular sum over image pixels in the original image by using four array references
only. This allows for very fast calculation of very simple features in constant time with
a few array references only. It also allows the scaling of features. Only the indices to
the correct array entries have to be scaled, while the calculation procedure of the sums
remains the same plus a correction factor for possible interpolation errors.
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(a) (b)

Figure 4.2: (a) The integral image value at location (x, y) is defined to be the sum of all values
above and left of (x, y). (b) The calculation of any rectangular sum in the original image simplifies
to four array references in the integral image. Four array references are needed to calculate the
sum of the pixels in rectangle D: At point P1 the integral image has the value of rectangle A, at
P2, it is the sum of A and B. At location P3, the sum is A plus C and at P4, it is A + B + C
+ D. The sum of all pixels in rectangle D can then be calculated as the references at the points
P4 + P1 − (P2 + P3).

4.3.2 Features and Weak Classifiers

Using the integral image, simple features, which are made of several rectangles, can be
calculated efficiently. The simplest features of this type are commonly known as Haar

wavelets. For an introduction to wavelets, the reader is referred to the work of Stollnitz
et al. [222, 223].

The set of features used for our experiments is depicted in figure 4.3. The first two
features a) and b) can characterize edges, while features c)-f) describe thin and thick
line like structures. Features g) and h) are special features to characterize corners and
point-shaped visual structures. Features are composed of at least two rectangles. Each
single rectangle contains not less than one pixel, which essentially means, that a feature
can be calculated from at least two pixel values. However, such features are highly noisy,
because the visual singularity to capture has be located directly beneath it. Thus, features
with a larger spatial extend are preferable, as they exhibit higher description power and,
therefore, higher performance.

Although we do not use more advanced features in our investigations, we want to
mention several extensions and adaptations proposed in the literature to create more
advanced features. Lienhart and Maydt proposed an extended set of Haar features, which
are rotated by 45◦ to better describe diagonal features [139]. A modified version of the
integral images is necessary for a rapid calculation of the new feature values. Porikli
proposed the integral image for extracting histogram based information from images [185].
On this account, the use of histograms of oriented gradients has been proposed in various
ways. Grabner et al. have shown this concept to work well for extracting features similar
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Figure 4.3: Simple Haar features. Each feature compromises two or more smaller rectangles.
The white rectangles have a positive, the black rectangles a negative weight.

to the original SIFT approach [87]. Sun and Si have proposed the usage of the gradient
histograms for detection of symmetrical structures in images [225].

Note, that the integral image is a fundamental tool to trade computational expenses
towards memory resources. Since integral images are accumulating images values, large
datatypes have to be used even for small-sized images. This places a clear contradiction
to the principles of embedded systems, as memory is a way larger concern there than on
usual computers. This is also a reason, why we use simple features and focus on more
principal aspects of the algorithm, rather than investigate features of higher complexity.

4.4 Training and Detection

Here we shortly outline the training process. Furthermore, we describe a method to
increase the accuracy of a detector, coevally decreasing its computational complexity.
Finally, we shortly outline the fundamental application of a detector for scale-invariant
detection and post-processing of the intermediate results.

4.4.1 Detector Training

The training of a cascade shaped detector proceeds as follows. First, the desired detection
rate D and false positive rate FP for the training process is chosen. Then, an initial
set of positive and negative examples is loaded, whereas the size of the dataset is in the
range of several hundred examples. The set is divided into a training set and a validation
set. All examples are scaled to a predefined, uniform rectangular size. For computational
efficiency, from the huge amount of possible features, given the various types of features
described above, a rather small set of features (usually 2-10%) is randomly chosen.

Each feature is trained on the training set, whereas the feature value is calculated on
all training images, and for the resulting probability distribution, a threshold is sought
which minimizes the loss-function Z. From all resulting weak classifiers, the one with
the smallest value Z is chosen to be included into the strong classifier stage, and the
training samples are reweighted for the next iteration. The training and selection process
is repeated and weak classifiers are chosen according to the minimum-Z criterion, until
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the stage meets the desired criteria in respect of D and FP 1. Note, that these rates are
evaluated on the validation set.

After finalizing a single stage, it is appended as a new cascade to the final classifier.
The training set and the validation set are cleaned up, which means that all misclassified
examples are removed from the sets. Both datasets are refilled to the original size, whereas
the data to refill the sets, in contrast, has to be misclassified by the preliminary cascade
classifier. As mentioned earlier, this bootstrapping process causes the training procedure
to focus on harder examples in later stages.

The cascade building process is finally stopped, if a predefined overall performance
criterion is met. This criterion is usually defined to be an overall maximum false positive

rate, which can also be understood as a percentage value of misclassified samples, given
the (not infinite, but huge) set of possible images in the universe.

4.4.2 Inter-Stage Feature Propagation

It is important to mention, that, for a good performance in terms of speed, each classifier
stage has to be kept as short as possible. This is important, because false patches should be
discarded as soon as possible, with only a minimum number of weak classifiers to evaluate.

Several different approaches have been proposed, aiming at this goal. Šochman and
Matas proposed the use of Inter-Stage Feature Propagation (ISPF) [252]. In principle,
the idea is to let stage k participate from the classification power of the weak classifiers of
stage k − 1.

(a) (b)

Figure 4.4: Inter-Stage Feature Propagation principle. (a) The threshold γk is selected to be the
threshold of stage k. (b) The first weak classifier of stage k + 1 is using the same distributions,
but takes an other threshold τk.

1Note that each feature is usually limited to be used only once, as there is no additional gain in

discriminative power, if it would be chosen multiple times
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More precisely, in the original approach of Viola and Jones, each stage is trained
without information of the previous stages. As a consequence, the only connection between
the individual stages during training is created through the bootstrapping process. By
definition, each stage has a stage threshold, which discards a significant amount of negative
examples, coevally keeping a predefined amount of positives. However, as the primary
focus is on meeting the criteria regarding the minimum rate of positive examples discarded,
a lot of discriminatory power of this strong classifier is lost.

The idea of ISPF is to search for a threshold for the strong classifier (or stage classifier),
which performs a classification with minimal loss function. In other words, given a finalized
stage, the output of the stage for the new set of bootstrapped training samples is treated
as feature values, and same loss function as for the weak classifiers is applied to build a
first weak classifier. In fact, this means, that the previous stage k is treated as the first
weak classifier of stage k+ 1, which can be interpreted as the propagation of a prior from
stage k into stage k + 1.

To formalize this, remember, that for the RealBoost the binary decision rule for the
strong classifier of stage k is

hstrongk (x) = sign(fk(x)− γk) (4.23)

with

fk(x) =
Tk∑
t=1

hweakt (x), (4.24)

being the sum over a all Tk weak classifiers of the stage k, and γk being the optimal
threshold with respect to the predefined minimum detection rate. Applying the idea
described above, in stage k + 1, equation 4.24 is modified to

fk+1(x) = hweak0 (x) +
Tk+1∑
t=1

hweakt (x). (4.25)

with
hweak0 (x) = sign(hstrongk (x)− τk). (4.26)

being the modified strong classifier of stage k with a threshold τk, which is optimal in
the minimum-loss-function sense. ISFP was originally proposed for the discrete AdaBoost
algorithm, but can be applied directly to RealBoost, as the loss function stays the same
as already described in section 4.2.3, and also given in equation 4.27.

Z0 =
∑
i

D0(i) exp(−yi hweak0 (xi)) (4.27)

A graphical example of the ISPF idea is given in figure 4.4. Inter-Stage Feature Prop-
agation is an efficient method to reduce the number of features. This results from the
exhaustive use of hard-earned discriminatory power from stage to stage. Even more im-
portant, while the algorithm is forced towards harder examples earlier in the training stage,
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the approach also leads to a significant decrease in computational complexity. This means
that not only the detector performance in terms of accuracy, but also the performance in
terms of speed is increased, which are both desirable effects.

4.4.3 WaldBoost

WaldBoost was originally proposed by Šochman and Matas [253] and is based on the
Sequential Probability Ratio Test of Wald [255]. A in-depth investigation of WaldBoost
for face detection is given in the thesis of Kálal [111]. Although we do not use WaldBoost
in this thesis, we strongly emphasize a closer investigation of this algorithm in the context
of embedded systems because of its striking benefits, i.e. a reduced number of features
and, thus, a faster way of decision making. Hereafter, we shortly outline the principal
idea.

Let x be characterized by an unobservable hidden state y ∈ {−1,+1}, which has to be
determined by successive measurements x1, x2, . . . . Further assume, that for c ∈ {−1,+1}
the joint conditional density p(x1, . . . , xT |y = c) to be known for all T . Wald defined the
likelihood ratio RT as

RT =
p(x1, x2, . . . , xT |y = −1)
p(x1, x2, . . . , xT |y = +1)

(4.28)

and the SPRT as a strategy S∗

S∗ =


+1, RT ≤ B
−1, RT ≥ A
#, B < RT < A

(4.29)

with # denoting ”take one more measurement”. Because optimal values for A and B are
hard to compute in practice, Wald suggests to set the thresholds to

A′ =
1− β
α

B′ = =
β

1− α
(4.30)

For building a detector using Boosting, α and β denote the desired false negative rate
and the desired false positive rate, respectively. Furthermore, Šochman and Matas pro-
pose to approximate the likelihood ratio by projecting the T -dimensional space into a
one-dimensional space using the current classifier hstrongT (x), which is based on T mea-
surements, i.e. T weak learners.

R̂T =
p(hstrongT (x)|y = −1)

p(hstrongT (x)|y = +1)
(4.31)

The classifier is the fastest possible, because it requires only the minimum number of
measurements that is necessary to make a decision with a given classification error.
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4.4.4 Scale-Invariant Scanning and Postprocessing

As already mentioned earlier, the detection process is done by exhaustively scanning and
classifying overlapping windows in a larger image. Needless to say, that the image is first
transformed into the integral image representation to allow for fast feature calculation.

The original detector, which was trained on a given patch size, is directly used to
find objects of the predefined scale. For scanning at different scales, the individual weak
classifiers are scaled by the scale factor, which equals the resizing of rectangles respectively.
This results in computational inaccuracies, as a raw scaling of the rectangles might lead to
calculations on ”fractions” of pixel values. This problem is mostly solved by reformating
the rectangle dimensions to integer numbers. A more critical problem in this matter is the
possible elimination of weak classifiers, if the scale factor is smaller than one and features
have a very small spatial extent. As a consequence, for training a detector, it is meaningful
to choose a sample size, which is close to the minimum size of objects to be detected. In
this way, the detector only has to scale up, which avoids this type of errors.

Due to the small translation invariance of the detector and the overlapping scan of
windows, multiple detections of single objects are unavoidable. Many different approaches
have been proposed to solve this problem, however with varying rate of success, but mostly
coming at a considerable amount of computational costs. One method for combining mul-
tiple detections, given confidence rated detections, is the Mean-Shift algorithm, which is a
nonparametric estimator of the density gradient and was originally proposed by Comani-
ciu and Meer [52]. The Mean-Shift algorithm is used to cluster correct results, where all
acquired detection responses are first represented as a two-dimensional probability distri-
bution. Each detection is registered and weighted using a 2-dimensional Gaussian kernel,
whose size is equal to the detection size. Given a search window with a fixed size, the
Mean-Shift algorithm iteratively climbs the gradients of this distribution to find dominant
modes. Dominant modes are found on algorithm convergence, which is also known as
mode seeking. A modified version, the Continuously Adaptive Mean-Shift (CAMShift)
algorithm, was proposed by Bradski [29]. The main difference is the adaptively adjusted
window size in order to find proper modes. In contrast to the approaches mentioned
before, we employ a rather simple idea, which is called Maximum Suppression. In this
approach, all detections with significant overlap are simply replaced by the detection with
the highest confidence rate. This approach is relatively simple, yet achieves satisfactory
performance.

4.5 Concept Evaluation on a Desktop Computer

Before we start with an investigation of the detection algorithm properties on our embed-
ded platform, we compare the original Viola-Jones detection approach with the enhanced
method using ISFP on a usual PC. To anticipate the justification for using the ISFP
method, any enhancement of the detection approach on the algorithmic level results in a
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more remarkable improvement than any other type of hardware-related adaptation. To
say in the context of the explanations given in chapter 2, any type of advance in terms
of detector size or accuracy finally leads to more significant benefits, than exhaustively
exploiting issues of parallelism on any platform. Needless to say, that the detector size is
equal to the number of weak classifiers in this case.

Before going into detail, we define some evaluation criteria, which allow us to investi-
gate the detector performance and to compare both approaches objectively. This is mainly
a repetition of the evaluation criteria commonly used in the literature. For evaluating both
approaches, we have chosen three different datasets, which come from the area of traffic
surveillance. The first dataset is the publicly available UIUC Database [238], which con-
tains side views of cars with different scales. Furthermore, we built two additional datasets
to further gain insight into the behaviour of the detection algorithm. The first dataset,
the ”A10” dataset, contains images extracted from a video stream, recorded on a gantry
over a highway in Austria. The major task is to detect vehicles, which are passing and
are moving away from the camera location. The major difficulty of this dataset is the
drastic change in aspect ratio and the relatively low resolution of images and objects, re-
spectively. The last testset, the ”License Plate” dataset, was originally acquired for license
plate recognition tests and contains a set of vehicle images taken from a pedestrian bridge
over an urban street. Each image contains a single license plate, which should be located
by the detector.

Note, that we are not interested in building a detector which is close to perfection
in terms of detection accuracy, because this would result in large classifiers with several
hundred features. We trade detection accuracy against computational complexity and aim
at reduced numbers of weak classifiers and cascades to keep the detectors fast. Needless
to say, that this comes at the cost of additional false positives. Our main intention is to
simply train several detectors from scratch, and examine the principal behaviour of the
algorithms. This is also important, because for product development or system setup, it
is of major relevance, which performance rates are to be expected, if a detector is trained
without special tuning to a given scenario. Moreover, we will show, that only a small
modification of the algorithm, i.e. using ISFP, can have a large impact on both, detector
size and accuracy.

4.5.1 Evaluation Criteria

In the following experiments, all detectors are evaluated on full images, rather than on
single patches. Agarwal and Roth defined some criteria, which allow us to compare differ-
ent types of detectors and different approaches in a fair way [2]. Also the performance of
multi-scale detectors can be measured, where a correct detection of an object is defined as

|i− i∗|2

α2
height

+
|w − w∗|2

α2
scale

+
|j − j∗|2

α2
width

≤ 1, (4.32)
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αheight = 0.25 · h∗ (4.33)

αwidth = 0.25 · w∗ (4.34)

αscale = 0.25 · w∗ (4.35)

(4.36)

In equation 4.32, (i∗, j∗, w∗) denote the center coordinates and the width of the true
location of an object, while (i, j, w) denote the center coordinates and width of the detec-
tion delivered by the detector. h∗ denotes the true height of the object. All parameters
αheight, αwidth, αscale are chosen, that for a correct detection the ellipsoid, defined in
equation 4.32, is allowed to have 25% of the size of the true object at max.

In cascaded detectors with K stages, the threshold ΘK of the last stage is used to
indicate, whether an evaluation is considered as a detection, or discarded as non-object.
During the evaluation on a test set, this threshold can be varied to trade the number of
false positives against the number of correct detections. Usually, one is interested in the
behaviour of the detector in between the two possible extremas, where both detection and
false positive rate are either zero or one. Due to the cascaded structure of the detectors,
the extremas can only be reached under special circumstances. On the one hand, setting
the threshold ΘK = +∞ causes a false-positive and a detection rate of zero. On the
other hand, a false-positive and a detection rate of 1 can only be reached, if the thresholds
of all stages 1 . . .K are set to −∞, which is equivalent with treating all evaluations as
objects. However, during the following evaluations, only the threshold of the last stage
ΘK is varied to investigate the behaviour of the detectors, which causes the sacrifice of
some curve smoothness.

To allow for comparison of individual detectors, in the literature most often the receiver

operator characteristic (ROC) curve is used. It allows for illustration of the trade-off
between true-positive (TP ) and false-positive (FP ) detections. The detection rate and
false-positive rate used in the ROC curve are calculated according to equations 4.37 and
4.38:

detection rate =
#correct true positives (TP )

#all positives in the test set (nP )
(4.37)

false-positives rate =
#false positives (FP )

#all negatives in the test set (nN)
(4.38)

The false-positive rate and the detection rate are plotted on the x-axis and y-axis of the
diagram, respectively. Comparing different detectors is still difficult due to the problematic
definition of the total number of negatives (nN). Treating the detector as a classifier,
(nN) can be defined to be the number of all negative evaluations, which is a very large
number compared to (nP ). Furthermore, for a detector, the number of evaluations is more
dependent on the implementation, than on the input or output data.

For evaluating a detector, a more convenient visualization method, called the Recall-

Precision Curve (RPC), can be used to avoid the need for setting (nN). The RPC allows
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for a more practical graphical description of the detector behaviour, as it only plots the
real number of false detections versus the number of correct detections. The individual
rates are defined as

Recall =
TP

nP
Precision =

TP

TP + FP
1− Precision =

FP

TP + FP
(4.39)

More precisely, Recall is identical to the true-positive rate in the ROC curve, and
1−Precision defines the percentage of false detections from all detections delivered by
the detector. The trade-off between Recall and Precision can also be expressed using the
so-called F-measure, as defined in equation 4.40. Summarizingly, the RPC is a more
practical description of the detector behaviour during real application.

F -measure =
2 · Recall · Precision
Recall + Precision

(4.40)

4.5.2 UIUC Vehicle Database

The algorithms were first evaluated on the free UIUC Car Database, which was published
by Agarwal and Roth [2]. The database contains 550 positive images with a size of 100×40
pixel values, which show cars from the side. Some examples are depicted in figure 4.5. We
used the parameter settings listed in Table 4.1 as configuration for training the detector.
As can be seen, we split the set into 350 training samples and 200 validation samples.
The negative images, as well as the images used for bootstrapping, were randomly chosen
from a set of pictures which were downloaded from the Internet. Only a small percentage,
about 10%, of all possible features were randomly chosen to form the feature pool. The
pool of all possible features contains 633,334 features. The detectors were trained, until
the overall maximum false positive rate of 0.0005% was reached. Note, that this implies,
that the detectors may have different numbers of stages.

Figure 4.5: Some samples of the UIUC car database.

For evaluating the detector performance, the UIUC database includes a set of 170
images, which contain a total of 200 cars of the same scale (100×40 pixels). Furthermore,
a test set is included, which contains 108 images and a total of 139 cars in scales from 0.8
to 2.0 of the original scale. For our detectors, for exhaustive scanning, we chose the step
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UIUC Training Parameters

object width 50 pixels

object height 20 pixels

positive Training examples 350

negative Training examples 300

positive Validation examples 250

negative Validation examples 200

bootstrap images 500

detection rate per stage 0.99

false-positive rate per stage 0.7

overall maximum false positive rate 0.0005

features used 63.334

Table 4.1: Settings used for the detectors trained on the UIUC dataset.
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Figure 4.6: Recall-Precision curves for both classifiers trained on the UIUC dataset. a) Detector
performance for the testset with cars of the same scale. b) Detector performance for the testset
with varying object scale.

size for the detection window to ∆xy = 2. This means, that we only scan about 1/4 of
all possible subwindows. However, due to the small translation invariance of the detector,
this does not have a bad effect on detection performance, but additionally reduces the
number of false detections.

A comparison of the original Viola-Jones approach and the detector with ISFP is given
in Table 4.2. The detectors contain 13 and 11 stages, with a total of 101 and 59 features,
respectively. The first weak classifier for each stage of the ISFP detector is not counted
here, because the evaluation costs are negligible. Theoretically, the number of features in
each stage is expected to increase monotonically. However, this is not the case with our
detectors, which happens, because the influence of ”noisy” samples is too strong. The
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Stage # features D FP

wo. ISFP w. ISFP wo. ISFP w. ISFP wo. ISFP w. ISFP

1 4 4 0.995 0.99 0.51 0.445

2 5 3 0.995 1.0 0.395 0.585

3 5 2 0.995 1.0 0.395 0.17

4 5 3 0.995 0.995 0.375 0.38

5 6 6 0.995 1.0 0.575 0.575

6 7 6 0.995 1.0 0.505 0.535

7 3 6 0.995 0.995 0.645 0.595

8 10 11 0.995 0.995 0.68 0.625

9 8 2 0.995 0.995 0.695 0.66

10 9 9 0.995 0.995 0.535 0.585

11 14 7 0.995 0.995 0.615 0.39

12 14 — 0.995 — 0.645 —

13 11 — 0.995 — 0.58 —

Total 101 59 0.9369 0.9607 0.0003 0.0003

Table 4.2: Comparison of the cascaded detector with inter-stage feature propagation (w. ISFP)
and the original Viola-Jones (wo. ISFP) algorithm on the UIUC test dataset.

Figure 4.7: Detection results for the ISFP detector on the UIUC testset with varying object
scale.

number of features needed in each stage increases with the stage number, as the decision
process gets harder. However, the number of features used in the ISFP approach increases
slower, which leads to a reduced total number of features needed.

The RPC on both testsets are depicted in Figure 4.6. As can be seen, both detectors
perform quite well on the testset with a fixed scale. Because there is no prior scale
information available for the dataset with varying object scale, the overall false positive
rate of the detector has a higher influence on the final detection result. We scanned the test
images exhaustively using 9 different scales in the range of [0.9, 2.0]. As can be seen clearly,
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Single Scale Multiple Scales

Agarwal et al. [1] 76.5 % 39.6 %

Fergus et al. [71] 88.5 % –

Leibe et al. [131] 97.5 % –

Fritz et al. [79] – 87.8 %

Mutch and Lowe [165] 99.94 % 90.6 %

VJ wo. ISFP 91.0 % 61.2 %

VJ w. ISFP 92.5 % 74.1 %

Table 4.3: Comparison of the cascaded detector with inter-stage feature propagation (w. ISFP)
and the original Viola-Jones (wo. ISFP) algorithm to other results found in the literature for the
UIUC databases.

the approach with ISFP achieves a way better performance on this testset, although it
needs less features. The highest F-measures of the original approach are 92.861% and
59.239%, while the highest F-measures of the ISFP approach are 93.685% and 78.608%,
respectively. A comparison to other approaches proposed in the literature is given in
Tables 4.3. As can be seen, the performance of our detectors is comparable to others,
but remember that we limited the number of weak classifiers for computational efficiency.
Some sample detection results of the approach with ISFP are depicted in Figure 4.7.

As can be seen clearly, the approach using ISFP achieves a higher accuracy and better
detection rate than the original approach. Coevally, it needs about 40% less features,
which improves detector performance in terms of speed.

4.5.3 Vehicle Detection on Highways

The second testset for the Viola-Jones detector is a set of frames taken from a surveillance
camera on an Austrian highway A10. The images have a resolution of 352 × 288 pixels.
For simplicity, detection is only performed on the back views of vehicles. A set of training
samples for the detectors is depicted in Figure 4.8. The training size was chosen to
be very small, because object size decreases fast with increasing object distance. The
number of 630 positive training samples was split into 400 examples for training and 230
for validation. The feature pool contains 50% of all possible features, which is a number
of 50,665 features. A summary of the parameter settings for training the detectors with
and without using ISFP is given in Table 4.4.

Because the scenario is recorded by a mounted camera at a fixed location, we have
chosen only 30 images for bootstrapping, which also contain some pictures of the given
scenario at different times of day and under different weather conditions, but always
without vehicles. We strongly point out, that this is only a weak help for the training
process to build a suitable detector for this scenario. Consider just one false positive,
maybe somewhere nearby the supervised road section. This single false positive has a
major impact on any benchmarking test on any database, because its detection is simply
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multiplied by the number of images tested. Thus, it is simply necessary to tune the
detector for a given setup to avoid such types of rather primitive, but impacting errors.
For a closer discussion of these issues and the introduction of a method to autonomously
learn a scene optimized detector, the interested reader is referred to the thesis of Roth
[196].

Detailed information about both detectors is given in Table 4.5. The detectors consist
of 15 and 13 stages, respectively. The testset contains 1057 images with a total number
of 1656 cars in various scales. Each image contains between 1 and 5 vehicles. In this
case, we did not use prior scale information to fit the detection and scanning process to
the underlying scene geometry. For both detectors, the RPCs are depicted in Figure 4.9,
which clearly reflect the unoptimized way of using the detector in an exhaustive way. The
highest F-measures for the original approach is 53.10%, and 56.47% for the ISFP approach,
respectively. In Figure 4.10, some detection results on the testset are depicted.

On the A10 dataset, the approach using ISFP is, again, performing better than the
original approach, although both approaches deliver only moderate performance given
the exhaustive scanning method. The main problem responsible for this is the missing
ability of the detector to deliver detections with an accurate scale factor. Some erroneous
detection results are depicted in Figure 4.11. Due to the restrictive criteria of Agarwal and
Roth, only detections with an accurate scale factor are registered as correct detections.
Many detections are counted as false detections in our case, because the size estimation
of the detected object does not fit the real object dimensions well. However, from an
algorithmic point of view, again, the major benefit of the ISFP approach is the reduced
number of features needed, which, leads to increased detector performance in terms of
speed. The approach with ISFP needs only half of the features, the original approach is
using.

4.5.4 License Plate Detection

The third testset was originally acquired for license plate recognition tests. A video stream
with 352×288 pixel resolution was recorded from a pedestrian bridge over an urban street.

Figure 4.8: Some samples of the A10 car database.
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Figure 4.10: Detection results for the ISFP detector on the A10 highway testset. Note, that the
detector was configured to only detect vehicles on the right half of the images.

Figure 4.11: Erroneous results for the ISFP detector on the A10 highway testset. The detector is
not able to detect the correct scale of the objects, finally delivering a lot of inaccurate detections.
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Highway A10 Training Parameters

object width 20 pixels

object height 20 pixels

positive Training examples 400

negative Training examples 280

positive Validation examples 230

negative Validation examples 250

bootstrap images 30

overall maximum false positive rate 0.0001

features used 50665

Table 4.4: Settings used for the detectors
trained for vehicle detection on the A10 dataset.
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Figure 4.9: Recall-Precision curves for both
vehicle detectors trained on the A10 dataset.

Stage # features D FP

wo. ISFP w. ISFP wo. ISFP w. ISFP wo. ISFP w. ISFP

1 4 3 0.995 0.991 0.404 0.332

2 3 3 0.995 1.0 0.564 0.56

3 9 2 0.991 1.0 0.592 0.576

4 5 3 0.991 0.991 0.592 0.552

5 6 6 0.991 0.991 0.588 0.208

6 7 5 0.991 0.991 0.588 0.584

7 8 6 0.991 1.0 0.46 0.444

8 9 2 0.991 0.991 0.432 0.528

9 6 6 0.991 0.991 0.432 0.516

10 5 6 0.991 0.991 0.58 0.584

11 5 2 0.991 0.991 0.584 0.384

12 4 4 0.99 0.995 0.564 0.576

13 13 4 0.99 0.991 0.568 0.58

14 8 — 0.99 — 0.58 —

15 9 — 0.995 — 0.532 —

Total 101 52 0.881 0.917 0.000079 0.000065

Table 4.5: Comparison of the cascaded detector with inter-stage feature propagation (w. ISFP)
and the original Viola-Jones (wo. ISFP) algorithm on the A10 test dataset.

Vehicles were passing at residential speeds, so the amount of motion blur is negligible.
Again, two detectors were trained, given the parameters summarized in Table 4.6. A
training set of Austrian license plates was collected with a handheld photo camera, taking
pictures of cars on a public parking lot. Some sample images are depicted in Figure 4.12.
The total number of 266 positive samples was divided into 130 samples for training and
136 sample images for validation. Note, that we, again, used only 30 bootstrap examples
for training the detector in the same way and for the same reason as described above.
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Figure 4.12: Some sample images of Austrian license plates.

License Plate Training Parameters

object width 75 pixels

object height 25 pixels

positive Training examples 150

negative Training examples 200

positive Validation examples 130

negative Validation examples 136

bootstrap images 30

detection rate per stage 0.992

false-positive rate per stage 0.6

overall maximum false positive rate 0.00005

features used 111326

Table 4.6: Settings used for the de-
tectors trained for license plate detection.
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Figure 4.13: Recall-Precision curves for
both license plate detectors trained on the LP
dataset.

Detailed information about both detectors, which consist of 15 stages each, is given
in Table 4.7. The testset contains 300 images with one car and one license plate in each
image. The scale of the plates is between 1.0 and 1.2 of the original training size. The
RPCs for both detectors are depicted in Figure 4.13. The highest F-measures of the
original approach is 57.683 %, and 70.634 % for the ISFP approach, respectively. In
Figure 4.14, some detection results on the testset are depicted.

As can be seen from the RPCs in Figure 4.13, the original Viola-Jones approach per-
forms worse than the approach with ISFP. The number of features used by the original
approach is only a little larger in this case, however, the approach using ISFP clearly
outperforms the original approach in terms of detection accuracy. Both detectors perform
rather poor, which is a result of the fact, that not all false positives on the background
were removed completely, This happens, although we have tuned the detector by selecting
special bootstrapping images. To increase detector performance, it would be necessary to
exclude all false positives, which might occur in the scenario. However, as stated earlier,
our main goal was to show the superiority of the ISFP approach over the original approach,
thus we can leave this issue open for further development work.
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Stage # features D FP

wo. ISFP w. ISFP wo. ISFP w. ISFP wo. ISFP w. ISFP

1 3 3 1.0 0.993 0.295 0.4

2 3 1 1.0 1.0 0.345 0.41

3 3 2 0.993 0.993 0.51 0.465

4 3 2 0.993 1.0 0.34 0.455

5 3 2 0.993 1.0 0.595 0.325

6 5 6 0.992 0.993 0.575 0.53

7 2 5 0.992 0.992 0.565 0.35

8 3 4 0.992 0.992 0.455 0.49

9 3 4 0.992 0.992 0.385 0.135

10 3 2 0.992 0.992 0.32 0.355

11 3 — 0.992 — 0.32 —

11 3 — 0.992 — 0.51 —

Total 37 31 0.926 0.948 0.000049 0.000031

Table 4.7: Comparison of the cascaded detector with inter-stage feature propagation (w. ISFP)
and the original Viola-Jones (wo. ISFP) algorithm on the license plate test dataset.

Figure 4.14: Detection results for the ISFP detector on the license plate testset. Note, that the
detector also detects license plates of foreign countries (as seen in the upper right image).

4.5.5 Summarizing Notes

To summarize the conceptual evaluation of both approaches, the ISFP approach achieves
better performance in terms of accuracy on all testsets used. Moreover, the number of
weak classifiers used is significantly lower, which leads to improved performance in terms
of detection speed and smaller detectors.

On this account, we conclude, that the extension of the original Viola-Jones approach
using Inter-Stage Feature Propagation is a more reasonable choice for building a detector
than using the original approach. As will become clear in the following, a compact detector
is necessary to allow for satisfying performance on an embedded system.
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4.6 Experimental Evaluation on the DSP

In the following, we investigate several aspects and procedures of the Viola Jones algorithm
on the prototypical embedded platform. We mainly focus on the real-time aspect of a
system, rather than on the question of energy and exact memory consumption. The
main focus of this section is to investigate and experimentally evaluate different aspects
of algorithm development, which were described previously in chapter 2.

4.6.1 Prerequisites

As a first test database, we again choose the UIUC database. We reuse the detectors
trained previously on a standard computer, which are stored in XML files. We use a
lightweight XML parser on the embedded platform to load the detector structure during
boot time. The binary program is compiled using the Code Composer Studio 3.2 from
TI and uploaded using a JTAG emulator device. It is rather obvious, that training of
detectors can not be done easily on an embedded platform, due to the lack of memory
and the problematic need of exhaustive data transfer between a standard computer and
the platform. Hence, training is always done on a standard PC, and the final classifier
is simply uploaded as some type of ”configuration” file. For uploading the images during
run-time, the onboard Ethernet interface is used. Because we are transferring image data
directly to the memory of the platform, the data is not compressed or modified in any way.
Thus, we can directly compare the impact of fixed point calculations or other hardware
related issues, as well as detection accuracy and throughput of our detector, without care
of additional boundary effects.

The following evaluations are based on an 352×288 pixel input image. There are three
good reasons for choosing this image size. Firstly, the integral image can be calculated in
one pass and fits into the internal DSP memory entirely, which makes memory swapping
between internal and external memory unnecessary. This allows us to focus on the algo-
rithm directly, rather than on problems of memory transfer timing. Secondly, this image
size enables us to still detect rather small objects, as shown in the previous section 4.5.3,
where we have used a rather small object size for our highway vehicle detector. Moreover,
weak classifiers are mostly based on sums of image areas rather than on single pixel values,
thus a reduction in image resolution is not critical in this respect. Lastly, choosing a fixed
image size allows us to define a performance limit for our individual functional parts, which
makes it possible to define overall real-time operation criteria in the context of a detector.

Given a detector for the UIUC dataset with a fixed scale of 100 × 40 pixels and a
step size of two pixels in horizontal and vertical direction, respectively, a total number
of 15,875 subwindows has to be classified. Given this single scale scan, the average time
of classifying a single subwindow must not exceed 2.5µs, to allow for operation of the
detector at 25 frames per second. This really states a hard limit, because it only allows for
object detection at this single scale. Scanning for object instances at multiple scales clearly
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Scale Factor hor. vert. sum

0.875 133 127 16,891

1.0 127 125 15,875

1.125 121 122 14,762

1.25 114 120 13,680

1.375 108 117 12,636

1.5 102 115 11,730

1.625 96 112 10,752

1.75 89 110 9,790

1.875 83 107 8,881

2.0 77 105 8,085

Total: 123,082

Table 4.8: UIUC scenario exhaustive scan-
ning. Listing of total number of subwindows
to be scanned, given an image size of 352× 288
pixels and a base size of 100× 40 pixels for the
detector. Note, that the calculations are based
on a step size of two pixels in horizontal and
vertical direction, respectively.

Scale Factor hor. vert. sum

0.75 169 137 23,153

1.00 167 135 22,545

1.25 164 132 21,648

1.50 162 130 21,060

1.75 159 127 20,193

2.00 157 125 19,625

2.25 154 122 18,788

2.50 152 120 18,240

2.75 149 117 17,433

3.00 147 115 16,905

3.25 144 112 16,128

3.50 142 110 15,620

3.75 139 107 14,873

Total: 246,211

Table 4.9: A10 highway scenario exhaustive
scanning. Listing of the total number of sub-
windows to be classified, given an image size of
352×288 pixels and a base size of 20×20 pixels
for the detector. Again, we assume a step size of
two pixels in horizontal and vertical direction.

implies a much faster operation of the detector, as the sum of subwindows to be scanned
rises considerably. This is also indicated in Table 4.8. Note, that the costs for classifying
subwindows of different sizes are the same, no matter of the scale the detector is currently
operating at. However, for exhaustively scanning images at 10 different scales, the aver-
age classification time for each subwindow must not exceed 0.3µs. As another example,
consider the more practical A10 highway scenario. A listing of the number of subwindows
to be scanned for object search at multiple scales is given in Table 4.9. For scanning at 13
different scales, the average classification time might not exceed 0.15µs. Although we are
aware of the fact, that achieving this goal is rather impossible exploiting the possibilities of
current hardware and algorithms, this example impressively illustrates the hopelessness of
a straight-forward realization of the approach on an underlying DSP platform of this kind.

In the following we will first investigate several aspects of a hardware related, func-
tional realization of the approach. The UIUC database constitutes our playground for
investigating this type of hardware related modifications. Thereafter, we will discuss is-
sues on the algorithmic level to improve the detector performance. In a more practical
scenario, the need for exhaustively scanning images at multiple scales is only hardly the
case, as most often the underlying scene geometry defines clear rules for searching at mul-
tiple scales. On this account, we will examine the impact of a tuned object scan instead of
exhaustively scanning. We use the ”A10 highway” testset, which we find to be a suitable
setup in this context.



102 Chapter 4. Object Detection

4.6.2 Core Functions

We define three core functions, which contain the main functionality of the detector. These
functions are the Integral Image Calculation function, the Classify Function, applied to
each single subwindow during exhaustive scan, and the Non-Maxima Suppression function,
which is post-processing all detections and formulates the final detector output.

4.6.2.1 Integral Image Calculation

The integral image is calculated according to the equations given previously in section
4.3.1. We assume, that the original grayscale image and the integral image are both
aligned to an 8-byte boundary, so we can test several different aspects of memory access
and instruction parallelism. All timings were measured directly on the DSP. The counting
of cycles was done using the Cycle Accurate simulator included in the Code Composer
Studio 3.2.

Table 4.10 lists the results of two different evaluations and different adaptations to the
integral image calculation function. A realization of the plain functionality achieves a low
performance and takes almost 1.8 ms for a 352×288 pixel image. By informing the compiler
about the independence of pointers to separate memory buffers, a small improvement can
be achieved. The main reason is, that now the compiler is able to introduce a higher
amount of parallelism into the object code. As can be seen from the rather larger gap,
using an more suitable memory access scheme, the highest benefits can be achieved. Using
word-wise memory access, the total time needed can be cut by almost 3/4. Using double-
word memory access leads to a small additional enhancement. A graphical comparison of
the different modifications in favour of the DSP is shown in figure 4.11.

A realization of the function in Linear Assembly is expected to achieve an additional
improvement. We conclude, that by exhausting the entire set of possibilities of parallelism
on the DSP, the performance can be increased by a factor of about 10.

4.6.2.2 Classify Function

The classify function is the main procedure, which is deciding upon the presence or ab-
sence of an object. It is applied to each single subwindow during exhaustive search, and
performs the cascaded classification. Basically, our simple weak classifiers consist of sev-
eral rectangular areas, whose integral sums are added or subtracted. The feature value is
compared to a classifier threshold and a classifier response is accumulated. The response
of an entire stage is a sum of alphas and betas, respectively, as already indicated in section
4.2.3. This sum is again compared to a stage threshold, which lets the subwindow pass to
the next stage, or discards it as false positive.

The high amount of additions, subtractions and comparisons gives rise to an inves-
tigation of the functional realization in a more hardware promoted fashion. On usual
computers, the use of large datatypes, i.e. float and double, is common due to their
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Evaluation Type DSP Simulation

plain C 1.814 ms 11,575,984 cyc.

anti-aliasing 1.669 ms 9,356,537 cyc.

of pointers

word memory 0.422 ms 3,062,143 cyc.

access

double-word 0.320 ms 1,762,656 cyc.

memory access

Table 4.10: Integral image calculation on a
352 × 288 pixel image. As can be seen, by ex-
ploiting the possibilities of efficient memory ac-
cess and parallelism, a drastic improvement in
performance can be achieved.
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Table 4.11: Graphical illustration of the ad-
vantage of the realization of the integral im-
age calculation function in a hardware favoured
way.

comfortable use and the lack of accuracy problems in handling. However, it is clear that
the use of datatypes, which are not directly supported by an embedded platform, leads
to a significant loss in performance. On this account, we want to investigate the need for
high accuracy in this context, and evaluate the benefits of a more hardware oriented real-
ization, using suitable datatypes for α, β, and the stage thresholds. Moreover, remember
that for calculating the feature value a scaling is necessary, which is dependent on the
basic feature size. Also this type of scaling is converted into a fixed-point version to better
fit the hardware conditions.

In Table 4.12, a listing of results for different datatypes is given. We have used the
detector with ISFP from above, containing 11 stages and 59 weak classifiers in total (see
Table 4.2 for details). As an input image, we used a single positive example, which passes
all stages, respectively. This also defines an upper bound for the amount of time, a patch
needs to pass all stages. As can be seen, using the the fastrts library, the computational
effort can be reduced for both, single- and double-precision datatypes. However, the
advantage of short or char datatypes is apparent, as they can be used to achieve a
remarkable improvement.

We also evaluated several different images from the UIUC testimage dataset with a
fixed scale, and averaged the time needed for each patch to be classified. The total number
of patches evaluated is 11,179, while the results for the individual datatypes are listed in
Table 4.13. In Table 4.14, we have listed the average time and averaged number of cycles
for a single feature to be calculated. Note, that these values are independent of the size
of the detector and denotes the average time for a feature value to be calculated as a
normalized sum over several rectangular areas in the integral image. This Table pinpoints
the dilemma of real-time operation of a detector rather clearly. Remember, that, at the
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Datatype DSP Simulation

double (wo. fastrts) 0.183 ms 292,878 cycles

float (wo. fastrts) 0.143 ms 223,763 cycles

double (w fastrts) 0.145 ms 226,553 cycles

float (w fastrts) 0.076 ms 157,856 cycles

short 0.045 ms 107,524 cycles

char 0.045 ms 107,652 cycles

Table 4.12: Comparison of different datatypes
for the weak classifier responses and the stage
thresholds. Note, that we have used the detec-
tor with ISFP from above, containing 11 stages
and 59 weak classifiers in total.

Datatype DSP Simulation

double (wo. fastrts) 0.0331 ms 35,668 cycles

float (wo. fastrts) 0.0257 ms 26,864 cycles

double (w. fastrts) 0.0253 ms 26,906 cycles

float (w. fastrts) 0.0128 ms 18,191 cycles

short 0.0077 ms 12,833 cycles

char 0.0072 ms 11,977 cycles

Table 4.13: Comparison of different datatypes
in respect of the average time of classification
given 11179 patches from several different tes-
timages of the UIUC. Again, we used the de-
tector mentioned before.

beginning of this section 4.6.1, we calculated an upper bound for the time available for
classifying each subwindow during an exhaustive object scan to be 2µs. In this regard, we
can retain, that this implies the rejection of most subwindows after one or two features,
which is really hard to achieve given the current Boosting approach.

To summarize the results, it can be seen, that the advantage of the datatypes, which
are especially suitable for the DSP, is striking. The total computational effort can be cut
by more than half. Due to the high number of subwindows scanned during detection,
even a small improvement has a remarkable effect on the performance of the detector on
a full-sized image. This is also graphically illustrated in Figure 4.15.
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Figure 4.15: Graphical illustration of the
striking benefits of using datatypes, which are
suitable for the DSP, given the average classifi-
cation time for a single subwindow.

Datatype DSP Simulation

double (wo. fastrts) 4.113 µs 4,934 cycles

float (wo. fastrts) 3.192 µs 3,702 cycles

double (w. fastrts) 3.157 µs 3,680 cycles

float (w. fastrts) 1.606 µs 2,560 cycles

short 0.950 µs 1,725 cycles

char 0.904 µs 1,723 cycles

Table 4.14: Average computational complex-
ity for a single feature to be calculated, given
the different datatypes used. Note, that in this
case, only the normalization of the rectangle ar-
eas cause the difference.

One major question when using fixed-point arithmetic is, if there is a significant loss
in detection performance due to the more inaccurate calculation of feature values and
thresholds, respectively. We evaluated the detector with different datatypes, using both
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datasets of the UIUC database. As can be seen in Figure 4.16 a), the use of approxima-
tions does not lead to a remarkable degradation in detection performance. The detection
accuracy is not significantly lower than using high-precision calculations. Note, that the
performance of the detector is almost the same when using char and short datatypes,
and is exactly the same for double and float values. Also on the second testset, where
exhaustive scanning is used, the use of approximated alphas and betas does not lead to
a significant decrease in accuracy. This can be seen in Figure 4.16 b). Therefore, we can
conclude, that it is sufficient, to use approximated values instead of exact values. Needless
to say, that this is a big step towards real-time capabilities of a detector on an embedded
platform without explicit hardware support for high precision datatypes.
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Figure 4.16: a) RPC curve of the detector on the fixed-scale testset, using exact values or
approximations of the thresholds, the alphas and the betas. b) RPC curve of the detector on the
testset with multiple scales, again, using exact values or approximations of the thresholds, the
alphas and the betas.

4.6.2.3 Non-Maxima Suppression

The Non-Maxima Suppression function forms the last phase of our detector. Multiple de-
tections of single objects are combined into final results, which express the final detector
output. In principle, the total functionality can be described by sorting all detections in
decreasing order by their confidence rate, and by two nested loops to calculate rectangle
overlaps. Given a detector with satisfying performance as used here, the number of de-
tections to be processed by the method is typically in the range of 10 to 250 detections.
The calculation of overlaps can be done efficiently using integer values, and the total time
increases almost linearly. This is also illustrated in Figure 4.17 and in Table 4.15.

Because of the low computational effort for calculating the result, the postprocessing
step can be ignored for global considerations on real-time performance of a detector.
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Figure 4.17: Linear dependency of the com-
putational effort for the number of detections
to be processed.

# of detections DSP Simulation

6 0.002 ms 5,652 cycles

18 0.009 ms 23,224 cycles

26 0.013 ms 34,842 cycles

45 0.025 ms 66,804 cycles

52 0.030 ms 95,052 cycles

72 0.042 ms 120,294 cycles

89 0.063 ms 178,794 cycles

121 0.085 ms 233,328 cycles

139 0.089 ms 293,772 cycles

182 0.121 ms 410,610 cycles

230 0.178 ms 473,388 cycles

Table 4.15: Listing of the amount of time and
number of cycles, needed for post-processing.
A graphical illustration of the almost linear de-
pendency is depicted in Figure 4.17.

4.6.3 Distance-dependent Scaling

In practical situations, often objects at multiple scales might occur frequently. However,
in most cases, the underlying scene geometry allows for the assumption of a particular
object scale at a given position in the image. Thus, it is not necessary to scan images
exhaustively with fixed scales at every position. This is an important hint, which can be
applied on the algorithm level to speed up the approach considerably.

For a closer investigation of this modification, consider the highway scenario, that we
have introduced in section 4.5.3. The underlying scene geometry and the physical real-
world conditions enforce, that vehicles have their largest appearance close to the camera
location. Needless to say, that the object size smoothly decreases with the distance of the
object. We can scale the detection window accordingly to avoid searching for objects at
impossible scales.

In Figure 4.18, the idea of distance dependent scaling is illustrated. As can be seen
clearly, the size of the detection window smoothly decreases with the distance to the camera
location. In Table 4.16, a listing of the subwindows to be scanned is given, assuming the
smoothing decrease in scale and a factor of 90% overlap between adjacent subwindows.
Note that, compared to our original calculations in Table 4.9, only about 2.6% of all
possible patches has to be classified, which leads to a tremendous increase in detector
performance. The total number of different scales is 62 in this case, starting with a factor
of about 3.75 in the front of the scenario, down to about 0.75 in the distance.

For evaluating this idea in practice, we have chosen the detector with ISFP, which
was trained and described before in Section 4.5.3. To recapitulate, the detector has 52
weak classifiers in 13 stages. In Figure 4.19, some results of the detector are depicted for
detecting cars by using a smoothly decreasing scale factor. Because we apply the detector
on the whole image for demonstration purposes, we can also detect cars moving into the
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Figure 4.18: Illustration of the distance-
dependent scaling of the detection window. The
decreasing size of the subwindows is also denoted
as a color change of the rectangles from green

(large scale) to dark red (small scale).

Scale Range # of Subwindows

0.75 1.00 1,680

1.00 1.25 1,656

1.25 1.50 652

1.50 1.75 750

1.75 2.00 395

2.00 2.25 388

2.25 2.50 245

2.50 2.75 240

2.75 3.00 149

3.00 3.25 145

3.25 3.50 123

3.50 3.75 81

Total: 6,504

Table 4.16: Listing of subwindows to be
scanned, using a smoothly decreasing scale.
Note, that we have listed the numbers by
scale range, rather than individual scales, be-
cause the total number of different scales is
62 in this case.

opposite direction reasonably well, although we have not explicitly trained the detector to
do so. Some results are depicted in Figure 4.20. Another very nice effect of the distance-
dependent scaling approach is, that the performance of the algorithm in terms of the recall
rate rises considerably as shown in Figure 4.21. Because of the restricted search, a lot of
false positives are removed and also the scale of the detections is much more accurate,
which reduces the number of bad detections by a considerable factor. As a consequence,
a much higher F-measure is achieved given the new approach. From the original level of
56.47%, it now rises to 86.15%, which is an excellent advancement.

Although the distance-dependent scaling approach delivers satisfying results in most
cases, some problems cannot be overcome, as depicted in Figure 4.22. As can be seen
clearly, large vehicles might erroneously be detected twice. Other problems occur at image
boundaries, where objects are not fully visible and the detector still works. Clearly, the
restrictive Agarwal and Roth criteria register such a detection as an error, although the
detector is not able to deliver a better result.

A very important aspect is the drastically reduced number of subwindows to be clas-
sified, as listed in Table 4.16. Classifying all patches on the embedded platform now takes
only 17, 29ms on average, which is a very nice result, compared to about 708, 22ms on
average for a full range scan at 13 scales, as previously discussed and listed in Table 4.9.
This result is also a strong argument, such that the application of a detector should be
carefully tuned to a given scenario. This aspect is also important, because it impressively
shows, that the saving of a big amount of computational costs to achieve a speedup, must
not necessarily come with a bad influence on algorithm accuracy. Quite the contrary, in
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Figure 4.19: Some sample results of the detector, given the smoothly decreasing scale search.
The detector is able to scale nicely to fit the vehicle size at a given position.

this case a dramatic increase in detection performance can be achieved. Thus, we can
conclude, that the real-time property of an overall system can be achieved by tuning the
underlying algorithm to the given application carefully and under consideration of all as-
pects of embedded systems, but with the main focus on modifications on the algorithmic
level.

4.7 Concluding Notes

In this chapter, we have investigated several aspects of object detection on embedded
platforms. Following a description of the theoretical foundations, we have shown the
plausibility of our approach on various different scenarios. While we were focusing on the
principal aspects of the realization of our approach on embedded platforms, significant
advantages of hardware related development have been revealed. An important result
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Figure 4.20: Some detection results for detecting vehicles, moving into the opposite direction.
As can be seen clearly, the approach also works for detecting vehicles driving into the opposite
direction, although we did not train the detector to do so.
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Figure 4.21: Recall-Precision curve for both, the exhaustive scan and the tailored scanning
approach. As can be seen, the performance is considerably higher, if scanning is restricted to
reasonable scales for each individual location.

is, that real-time behaviour of a detector can only be achieved by incorporating multiple
different aspects of algorithm realization. Hardware related considerations, like parallelism
and suitable datatypes, can lead to a significant benefit on the smart camera, compared
to a straight-forward implementation. However, only modifications on the algorithmic
level enable an approach to deliver acceptable performance in both, accuracy and speed.
This was demonstrated by achieving tremendous speedups by adapting the approach using
reasonable assumptions and limitations.

In his thesis, Reuvers discussed the suitability of the original Viola-Jones approach for
implementation on SIMD architectures [193], and also discussed the suitability of different
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Figure 4.22: Some erroneous results of the distance-dependent scaling approach. Large vehicles
might be detected twice, and problems occur at the image boundaries, where objects are not fully
visible, but are still detected by the detector.
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types of features. We agree with one of his main findings, that the Haar filters, and
separable filters in general, are very suitable for DSP-based platforms, because they can
be calculated efficiently. However, one of the main unsolved problems in this respect
is, that the building of an image pyramid is necessary to calculate filters with a larger
spatial extent. Needless to say, that this comes at considerable costs in terms of memory.
Even more important, the methodology of detecting is still restricted to a sliding window
approach, in which a classifier has to be applied at each image location exhaustively. Out
of the scope of this thesis, we ran some premature tests on an algorithm based on separable
filters and image pyramids to get an idea about the resulting detector behaviour. Although
we found out, that the idea works in general, we could not build a detector, which was
competitive to the original approach, neither in terms of accuracy, nor in terms of speed.
Thus we came to the conclusion, that for successfully deploying the Viola-Jones algorithm
on embedded devices, modifying the classifier structure, i.e. the number of weak classifiers,
is preferable over changing the way of feature calculation. However, both starting points
do not exclude each other, thus we also look forward to a closer investigation of the ideas
of Reuvers for building an improved approach.

We demonstrated, that our approach is suitable to perform in real-time. It is still
necessary to keep several important issues in mind, regarding the size of the detector
and the number of weak features. Moreover, limited resources in terms of memory only
allow for competitive performance, if the image size allows for operating without need for
swapping memory blocks between external and internal banks. It was shown, that the
detector size has a major impact on the overall performance, say, the less weak classifiers
are used, the higher the performance in terms of speed. Hence, an important result in
respect of our hardware related investigations is, that algorithms, aiming at minimizing
the number of weak classifiers, are especially suitable for the development on embedded
systems. From an other perspective, this outcome can also be interpreted as one more
indication, that modifications on an algorithmic level has a much higher influence on the
overall performance of an approach than adaptations on the implementation level. In
this regard, we especially refer to the work of Šochman and Matas on WaldBoost [253],
which was already described in Section 4.4.3, respectively. WaldBoost seems to be the
most suitable approach, aiming at a minimization of the number of weak classifiers and,
thus a maximization of detector performance in terms of speed. Although we have not
evaluated it in the context of our work on embedded systems, a closer investigation is
strongly recommended.



112 Chapter 4. Object Detection



The creation of something new is not accom-
plished by the intellect but by the play instinct
acting from inner necessity. The creative mind
plays with the objects it loves.

Carl Jung

Swiss psychologist (1875 - 1961)

Chapter 5

Object Recognition

O
bject recognition1 is one of the most popular tasks in the field of computer vi-
sion. In the past decade big efforts were made to build robust object recogni-
tion systems based on local appearance features [44, 167, 219, 221]. For such a

framework to be applicable in the real world, several attributes are very important: insen-
sitivity against rotation, illumination or viewpoint changes, as well as real-time behavior
and large-scale operation. Current systems, which run on usual computers, already have
a lot of these properties and, though not all problems have been solved yet, nowadays
they become more and more attractive to the industry for inclusion in products for the
customer market. However, yet, object recognition has not been investigated widely in
the context of embedded systems. On this account, this chapter deals with the realization
of a state-of-the-art object recognition approach on DSP-based smart cameras.

The remainder of this chapter is structured as follows. First, we shortly define the
importance of object recognition in the context of embedded systems. We also outline
our work in section 5.1. A detailed description of the methods involved in building our
object recognition algorithm is given in the following section 5.2. We also outline our
framework and give details about training and implementation of our system. We closely
describe all steps in designing our approach and give side notes on alternative methods.
In section 5.3 we experimentally evaluate our system on a challenging object database and
discuss real-time and real-world issues. Furthermore we investigate some special features of
our approach and elucidate the dependencies of several parameters on the overall system
performance. In section 5.4, an application of the approach to vehicle reacquisition on
public streets is described. In this context, also special issues concerning larger smart
camera networks are discussed. The chapter concludes with a discussion of the results and
some final notes in section 5.5.

1This chapter is an adaption and extension of the work of [9] and [11].
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5.1 Introduction and Motivation

On the one hand, there is an indisputable need for certain object recognition capabilities
in any system for visual surveillance. Needless to say, that for smart cameras this places
a clear justification for development in that area. On the other hand, also a big range
of commercial products deals with mobile, handheld devices, like mobile phones, PDAs
or portable music players. Almost everyone’s mobile phone is equipped with a camera
and, thus, can also be treated as a small embedded vision system. Hence, embedded
vision platforms are already present in our everydays life, however, only offering a limited
amount of computational and memory resources [264]. Clearly this gives rise to new
applications, like navigation tools for visually impaired persons, or collaborative public
monitoring using millions of artificial eyes. It is obvious, that certain object recognition
capabilities for surveillance, household robotics, entertainment, or military and industrial
robotics are indispensable features of embedded systems, and, thus object recognition on
embedded devices is an important field of research and development.

Some attributes of embedded platforms strictly limit the practicability of current state-
of-the-art object recognition approaches. For example, the amount of memory available
on a device strictly limits the number of objects in the database. Therefore for building an
embedded object recognition system, one goal is to make the amount of data to represent a
single object as small as possible in order to maximize the number of recognizable objects.
Another important aspect is the real-time capability of these systems. Algorithms have to
be fast enough to be operational in the real world; they have to be robust and user-friendly,
otherwise a product equipped with such functionality is simply unattractive to a potential
customer. For example, in an interactive tour through a museum object recognition on a
mobile device has to be fast enough to allow for continuity in guidance. To summarize,
building a full-featured recognition system on an embedded platform turns out to be
a challenging problem given all the different aspects and environmental restrictions to
consider.

In the following, we describe a method to deploy an object recognition system on our
prototypical DSP-based embedded platform. To the best of our knowledge, we are the first
to extensively investigate issues related to object recognition in the context of embedded
systems; by now this is the only work studying the influence of various parameters on
recognition performance and runtime behaviour. The major goal is to deploy a medium-
sized database, which contains 250 objects, on a DSP-based platform, and to understand
the tradeoffs between the database size, recognition performance, computation accuracy
and other issues specific to embedded devices. We pick a set of high-level algorithms to
describe objects by a set of appearance features. As a prototypical local feature based
recognition system we use DoG (Difference of Gaussian) keypoints [142] and PCASIFT
(Principal Component Analysis Scale Invariant Feature Transform) descriptors [115] to
build compact object representations. By arranging this information in a clever tree-
like data structure based on k-means clustering, a so-called vocabulary tree, real-time
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behaviour is achieved. By applying a dedicated compression mechanism, the size of the
data structure can be traded off against the recognition performance. Thereby accurate
tuning the properties of a recognition system to an arbitrary DSP-based hardware platform
can be performed. As it is shown in extensive evaluations by considering both, special
properties of the algorithms and dedicated advantages of special hardware, considerable
gains in recognition performance and throughput can be achieved. To further prove the
reasonability of our approach, we demonstrate its suitability in a more practical application
in traffic surveillance, namely vehicle reacquisition.

5.2 Object Recognition Framework

We start with a description of our keypoint detector and the region descriptor used.
Thereafter the vocabulary tree building approach and its usage is explained in detail.
Finally, our methods to successfully compress the amount of data in our database is
elucidated at length. A schematic illustration of our approach is depicted in Figure 5.1.
We also shortly explain the object database, that is used to evaluate the approach, and
shortly outline the preparations for experimental evaluations of the approach.

Figure 5.1: Schematic illustration of our approach.

5.2.1 Keypoint Detection and Descriptor Calculation

Based on grayscale images, we use the DoG detector to extract interest regions. The DoG
detector is mainly based on Gaussian filtering and differencing the resulting filtered images
(see Figure 5.2) [142]. The differences can be interpreted as an approximation of the scale
normalized Laplacian. By doing so a scale space is built in multiple octaves, and maxima
and minima in the scale space are determined. These extremas are keypoints, which
indicate the presence of blob-like (more or less circular) structures in images. For each
keypoint a circular region around the keypoint is cropped whose size is dependent on the
scale factor delivered during detection. By summing up the gradients in the image patch,
the main gradient direction is determined and assigned as orientation to the keypoint.
The image size is downsampled by a factor of 2 with each doubling of the sigma of the
Gaussian filter kernel (after each octave) to form the initial image for the next octave.
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Figure 5.2: Illustration of DoG keypoint detection. First the scale-space is built by generating a
difference image stack from multiple Gaussian filtered images. The maximas found in scale space
are the keypoints sought.

A nice feature of the DoG detector is that it is almost purely based on image filtering
and addition/subtraction operations. While a clever arrangement of filtering and search
operations makes the algorithm also efficient in terms of memory usage, the algorithm is
very well suited for DSP platforms, as they are mainly designed for fast filter operations.
We implemented the Gaussian filtering in fixed-point as the hardware platform has no
floating point unit and floating point operations have to be emulated in software. Due
to the small amount of internal memory the filtered images and the difference images are
consecutively swapped between the external memory and the internal cache of the DSP.
To reduce the number of difference images to be stored in the stack for extrema search, the
search is performed on each difference image stack immediately after creation. By doing so
the difference image can be discarded immediately and only the valuable information about
maxima and minima has to be kept. For determining the main orientation of a keypoint, a
scale-normalized patch is cropped from the original image around the keypoint and resized
to a fixed size to fix the runtime of this orientation assignment step. After calculating the
gradients on this patch, the main gradient orientation is determined by finding the maxima
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in the accumulated orientation histogram. For all local peaks that are within 80 % of the
highest peak another new keypoint with the same scale and location but with different
orientation is created. This significantly increases stability in matching for keypoints in
highly textured areas with multiple dominant orientations [142].

For calculating the description of the appearance around a detected interest region, we
use the PCASIFT approach from Ke and Sukthankar [115]. This descriptor has several
advantages, especially for our utilization. First, the algorithm mainly consists of multiply-

accumulate (MAC) operations, which fits the properties of embedded platforms very well.
Secondly, the descriptor is much more compact, because they have proven the d = 36
dimensional descriptor to exhibit the same discriminatory power as the 128-dimensional
SIFT descriptor. A third big advantage is, that a further decrement of d results in only
a slight loss in discriminatory power, thereby making the descriptor calculation itself
scalable. Finally, the amount of storage for the a large set of descriptors is also reduced by
a factor of ≥ 4, because of the smaller amount of memory needed to store the individual
descriptors.

A scale-normalized patch which exhibits the same dimensions as proposed in their
original work is extracted from the original image and rotated to compensate the specific
orientation. The dimensions are chosen such that we can use the same coefficients as Ke
and Sukthankar [115]. Furthermore we converted their Eigenspace projection matrices
to a fixed point version. By doing so we can take advantage of the benefits of fixed
point calculations on our platform. The dimensionality of the resulting descriptor d can
be adjusted, which allows for a tradeoff between discriminability and final recognition
performance, but also between more and less computationally expensive calculation. The
final descriptor is a d-dimensional vector of 1-byte elements.

5.2.2 Vocabulary Tree Generation

Although linear exhaustive search can be implemented very efficiently given embedded
hardware properties, it is very computationally expensive. The exhaustive matching of
descriptors in databases is impracticable for databases with more than several hundred
descriptors. Though a tree-like data structure combined with an approximated nearest
neighbor search is preferred for the management of our object representations, even if data-
dependent control flow and control code containing random conditional statements cannot
be executed very efficiently on DSPs. The vocabulary tree allows for a approximated
nearest neighbor search in moderate dimensional spaces with a huge numbers of candidates.
Because this method has been shown to be highly efficient in terms of speed and accuracy
[167, 219], we also use this technique in our own approach.

For building our vocabulary tree we largely follow the approach of Nistér and Stewénius
[167]. Given a database of descriptors for training, hierarchical k-means clustering is used
to divide the feature space into separate partitions without interruption. As the final
result of this approach, a structure is generated where each descriptor from the training
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set forms a single leaf of the tree. The inner nodes of the tree are the cluster centers
identified during training. Note, that we train and build the vocabulary tree on a usual
PC, because of the high computational effort and the high amount of memory resources
needed. The vocabulary tree is stored as a raw data buffer, such that it can be uploaded
onto a hardware platform easily.

Given a new descriptor determining the approximate nearest neighbor is performed by
traversing the tree from the root downwards to the leafs. In each stage the actual descriptor
is compared to the inner nodes of the tree and the one with the smallest distance is chosen
to be the next node along the path. This procedure is repeated until a leaf - and thus the
nearest neighboring descriptor - is reached. The parameter k chosen in the clustering step
can thus be used to trade the depth of the tree structure against computational complexity
in early stages of the tree in the final recognition step. The step of approximate nearest
neighbor search is also performed directly after building the tree to build the so called
inverted file structure. This structure holds the information which leaf nodes are hit
by the descriptors of an object (or which object inversely obtains a vote if a descriptor
hits the leaf). Given a fixed tree the inverted file structure can be altered during runtime,
which means that object representations can be added and removed from the file structure
arbitrarily. This is also subject to investigations in section 5.3.

One point to mention is the fact that the k-means clustering based tree structure is just
a method to approximate the optimal nearest neighbor search. Experiments show that
determining the absolute nearest neighbor in descriptor space fails in about 2-5 % of all
cases. The reason for this is that the clustering algorithm enforces linear borders between
clusters and partitions the feature space locally using global cluster information. Thus, for
points close to cluster borders the procedure of nearest neighbor search can fail2. However,
for the overwhelming majority of points in space the partitioning is accurate enough and
the algorithm is robust enough to overcome this additional amount of noise. For the
descriptors in the training set, the indexing procedure is still performed once again after
building to minimize inaccuracies, even if the build procedure delivers an initial indexing
result implicitly.

One major drawback of the algorithm is that it is based on a data-dependent control
flow. It is impossible to foresee the path of descriptors through the individual branches
of a tree. Thus it is nearly impossible to optimize the query any further to better fit the
environmental conditions. Though a maximum execution time is implicitly given by the
depth of the tree, thus a worst case runtime of the query can be calculated. However, the
majority of resources is spent anywhere in other steps of the recognition algorithm, as it is
shown in section 5.3, thus optimizations here are not critical to the overall system success.
Nevertheless, modifications are possible to limit the number of descriptors and to set a
tight upper bound for the algorithm runtime. For example, the Adaptive Non-Maximal

Suppression (ANMS) strategy can be used to select a fixed number of interest points from
2Note, that in contrast to the approach of Nistér and Stewénius [167], we assume a binary decision tree

here, thus the number of failures is much lower.
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(a) distance based pruning

(b) level based pruning

Figure 5.3: (a) Distance and (b) Level based leaf pruning given a predefined threshold θ or a
number i of levels, respectively.

images, spaced equally over the entire image, as proposed by Brown et al. [37]. For reasons
of computational efficiency, we did not employ such a strategy in our current approach
and left this issue as an open point for optimization in our framework.

5.2.3 Tree Compression and Pruning

The vocabulary tree obtained by the procedure described above contains the full amount
of information. Consequently each final leaf of the tree votes for a single object only. While
this guarantees for the finest possible partitioning in feature space given the training data,
the amount of information to store is large such that it cannot be easily deployed on a
platform with limit memory resources. Due to the robustness of the local feature based
approach a lot of redundancy can be removed. The most efficient way to achieve this is
to prune the tree and replace the single votes by a set of votes from the pruned leafs. In
other words, if leafs of the tree meet a given criterion they are collapsed into a single one
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which now votes for several objects. Note that there is a strong relation to Decision Trees
in Machine Learning, where pruning is used to obtain a better generalization [93, 144].
We have evaluated two possibilities for tree pruning.

• Leafs are collapsed if their distance in feature space is smaller than a predefined
threshold θ. In this case the partitioning in densely populated areas of the feature
space is made coarser first while the partitioning in sparely populated regions of the
feature space is not affected. In the following, this strategy is denoted as distance-

based pruning.

• All subtrees with a predetermined number i of inner nodes are pruned. Thus the
partitioning is made coarser equally well in all regions of the feature space by simply
merging leafs (and partitions respectively). We also refer to this method as level-

based pruning.

Both ideas are illustrated in Figure 5.3. By doing so the amount of data needed to store
the tree is reduced considerably trading against recognition performance.

5.3 Experiments

In this section we investigate several aspects and properties of our approach in detail.
While we want to evaluate the recognition performance in detail regarding different pa-
rameters, we also want to evaluate our algorithm in terms of memory usage, timing profile
and calculation accuracy on our hardware platform.

First we note some informative details about building our object database, the system
setup and our evaluation strategy in Section 5.3.1. In 5.3.2, we discuss the influence of the
descriptor dimensionality on the recognition performance. Then we show how our pruning
strategies described in Section 5.2.3 influence the recognition performance and the size of
the database in 5.3.3. The robustness against occlusion and background noise is subject to
experimental evaluations in 5.3.4. We also describe a nice feature of our approach, namely
the addition and removal of object descriptions at runtime, in Section 5.3.5. In Section
5.3.6 we investigate the throughput of our system; in detail, we list the average timing
results for each individual step of the algorithm on our hardware platform and specify
the amount of memory needed to store the individual data buffers. Detailed information
about the calculation accuracy in the most important steps of our approach is given in
Section 5.3.7. In Section 5.3.8 we shortly demonstrate the speed advantage by choosing
fixed point calculations over floating point calculations on our platform. Furthermore, in
Section 5.3.9 we discuss optimization issues for further speeding up the algorithm.

5.3.1 System Settings

Our image database is a subset of the publicly available ALOI (Amsterdam Library of

Object Images) database from Geusebroek et al. [84] (Figure 5.4 shows some sample
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Figure 5.4: Sample images of objects selected from the ALOI database for our experiments.

Figure 5.5: The images of two objects recorded over the complete viewpoint range. For ease of
illustration only the images of 15◦ steps are depicted here.

images). We preselected those 250 objects out of 1000 which deliver the highest number
of DoG points (see Appendix B for a listing of the object IDs). The main reasons for
doing so is that deploying this medium-sized object database on our system is already
challenging, but to a greater extent because the database contains a lot of objects which
can not be sufficiently represented using DoG points alone, as the number of them is too
small. To overcome this problem multiple different detectors can be used, but for now we
left that as an open issue.

We evaluate our recognition system for a viewpoint range of ±90◦. In Figure 5.5 the
images for two objects over the complete viewpoint range are depicted. For building our
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Figure 5.6: Schematic map of our object recognition system. On the left side, the database
generation algorithm performed on a PC is shown. Descriptors are calculated on interest regions
detected, and the features are iteratively clustered to form the final vocabulary tree (with k = 3
in this case). This data structure is subsequently uploaded to the embedded device. On the right
side, the process of object detection on the embedded device is depicted. While the extraction of
features works the same as on the desktop computer, the final object match is determined following
the nearest neighbor search for each descriptor in the tree and finding the maximum vote in the
overall voting histogram.
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database we use all descriptors at steps of 15◦, while we calculate the recognition results at
intermediate steps of 5◦ and omitted testing the system at the angles learned. Because of
the memory restrictions of the hardware platform, we limit the image size to CIF format,
352x288 pixels respectively. As the original ALOI images exhibit a size of 768x576 pixels,
all images are converted to grayscale and resized to CIF format prior to database building
and evaluation. Note that we do not change the aspect ratio of the images but scale the
images to 384x288 pixels and crop 16 columns from both the left and right image border
to arrive at the desired image size.

For the vocabulary tree, for all experiments k was chosen to be 2, which means that
each vocabulary tree is a binary decision tree. Without loss of generality k can be chosen
arbitrary to trade vocabulary tree depth against calculation costs and accuracy in practice.
Although Nistér and Stewénius [167] have shown a large k to result in better recognition
performance, our choice of k = 2 is inspired by the idea of simplified control flow for
handling a vocabulary tree and the approximate-nearest-neighbor query on an embedded
device. If k = 2, the query of a descriptor along the path in a vocabulary tree can be
implemented by simple if − then − else statements, largely avoiding costly branching
instructions. Choosing k to be larger would result in a more complex control structure.

In our approach to calculate distances in feature space use the sum of squared distances

(SSD) metric rather than the Euclidean metric. In doing so the partial ordering of elements
is not changed (which essentially means that the voting result is not affected). However,
we can omit calculating the square root which is a computationally expensive task on our
embedded platform. Due to the memory restrictions we further assume that the critical
limit for our database residing in the external memory of the platform is 12.5MB, as we
also need a small piece of memory to store other data buffers.

The training of the object recognition system is done on a standard desktop computer
using MATLABTM. After building the vocabulary tree we upload it onto our smart
camera platform, where all further evaluations are performed. The vocabulary and the tree
structure is represented as raw blocks of data in memory which are accessible interpreting
pointers from a binary executable on the platform. The binary program for recognizing
objects is built using the Code Composer Studio 3.2 from TI and uploaded together with
all necessary data buffers using a JTAG emulator device. During evaluation, images are
presented to the algorithm, which extracts local features, calculates descriptors, searches
correspondences in the vocabulary tree and finally returns the ID of the best object match.
A schematic illustration is shown in figure 5.6. On the left side, the database generation
algorithm on the PC is depicted, while on the right side the object recognition procedure
on the embedded platform is described.

5.3.2 Feature Dimensionality

As shown by Ke and Sukthankar [115], the PCASIFT descriptor exhibits almost the same
discriminability as the original SIFT descriptor proposed by Lowe [142]. However, the



124 Chapter 5. Object Recognition

Figure 5.7: Average recognition performance
for different feature types and descriptor dimen-
sions over the whole viewpoint range. For ease
of illustration only 4 plots are drawn here.

Figure 5.8: Average recognition performance
and database size for different feature types and
descriptor dimensions are marked as dotted and
full line. The critical limit of 12.5MB for our
database is marked as red dashed line.

amount of data to be stored is much less, at least a factor of about 1/4, which is desirable
in our case. In Figure 5.7, the recognition performance for the 128-dimensional SIFT
descriptor and different dimensional PCASIFT descriptors over the complete viewpoint
range of ±90◦ is shown. For a fair comparison the evaluations were performed without
background noise or occlusions.

As can be seen the PCASIFT descriptor performs only slightly worse than the SIFT
descriptor. In general recognition performance decreases with the distance in viewpoint
from an angle learned during training (we omitted the learned poses). At 0◦ objects are
recorded in frontal view. The objects often exhibit a lower number of DoG points when
they are viewed from the side. Thus the recognition performance generally decreases when
the viewpoint changes from 0◦ towards ±90◦.

In Figure 5.8, the database size and the average recognition performance for different
feature types and descriptor dimensions are shown. The critical limit of 12.5MB for our
database is marked as a red dashed line. Choosing the PCASIFT descriptor over the
SIFT descriptor results in a major decrease in database size from about 78MB to about
32MB for the 36 dimensional descriptor. Note that the database size is only reduced
to a factor of about 0.41, because the internal tree structure needs a fixed amount of
space which is not influenced by the choice of the descriptor type. As can be seen, the
database size only slightly decreases with the number of descriptor dimensions and never
reaches the critical limit. However, the recognition performance drops below 90% when the
descriptor dimensions are reduced to 12. Note that the average recognition performance
was calculated without background noise or occlusions.
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Figure 5.9: Average recognition performance
for the level based pruning method and different
parameter settings.

Figure 5.10: Database size for the level based
pruning strategy and different parameter set-
tings. The size limit of 12.5MB is depicted as
plane here.

5.3.3 Tree Pruning

As shown in the previous section, a much more compact database can be generated choos-
ing the PCASIFT descriptor over the SIFT descriptor. However, the size of the database
is still much too large to fit onto our platform (see full line in Figure 5.8). Thus we em-
ploy different strategies to further compress the database, still trying to preserve the best
recognition performance possible. In Figure 5.9 the influence of the level based pruning
strategy and the resulting performance levels are visualized. In Figure 5.10 the size of the
resulting databases is shown. For the distance based pruning strategy, in Figure 5.11, the
resulting recognition performance is visualized. In Figure 5.12, the amount of memory to
store the resulting databases is shown. Figures 5.13 and 5.14 show the number of leafs in
the vocabulary tree for both pruning strategies.

As can easily be seen, using the level based method the pruning only slightly influences
the recognition performance, but has a major impact on the database size. Note that level
based pruning is much more predictable in terms of database size and recognition perfor-
mance. Moreover, as a comparison of the Figures 5.9 and 5.11 reveals, by choosing the
level based pruning method over the distance based a much higher average recognition per-
formance can be achieved. Another interpretation of the superior performance of the level
based pruning method is that the tree is pruning uniformly in all branches. This means
that the partitioning in feature space is made coarser while the amount of additional noise
can be controlled very well. Distance based pruning in contrast merges individual branches
without respect to information loss. The partitioning in densely populated regions of the
feature space is made coarser at the loss of discriminability. A way to solve this problem
would be the use of an entropy based measure to decide on pruning the tree. By doing so
the loss in information could be better traded off against database compression.



126 Chapter 5. Object Recognition

Figure 5.11: Average recognition performance
for the distance based pruning method and dif-
ferent parameter settings.

Figure 5.12: Database size for the distance
based pruning strategy and different parameter
settings. Again, the 12.5MB boundary is de-
picted as plane here.

Figure 5.13: Number of leafs in the tree for the
level based pruning method and different param-
eter settings.

Figure 5.14: Number of leafs in the tree for
the distance based pruning method and different
parameter settings.

For the following experiments we choose the dimensionality of the descriptors to be 28
and the level based pruning method with a level of 2. By doing so we generate a database
with about 12.1MB, still keeping an average recognition performance of about 90.6%. This
setting is used to generate all following results.

5.3.4 Background Noise and Occlusion

To illustrate the robustness of the approach against background noise, we projected the
object images onto different background images, which are shown in Figure 5.15. Some
sample results of these projections are shown in Figure 5.16. As can easily be seen, some
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Figure 5.15: The four background images onto
which we have projected the objects to further
challenge our recognition system.

Figure 5.16: Some sample projection results.
The amount of background noise is severe, some
of the objects itself occupy less than 20% of the
total image area (352x288 pixels).

Figure 5.17: Average recognition performance
on images with background noise for the 28-dim.
PCASIFT descriptor and the level based pruning
method.

Figure 5.18: Average recognition performance
for projections onto the four different back-
ground images for the settings chosen (28-dim.
PCASIFT, pruning level 2).

of the objects are very small, thus they occupy less than 20% of the total image area.
In Figure 5.17 the recognition performance on our background images for different levels
of pruning for the complete viewpoint range are shown. In Figure 5.18, the recognition
performance of our chosen setting for the four different background images is shown. It
is easy to see that the approach performs best on the seaview image as most parts of the
image are low textured. On all other images, our approach performs almost equally well.

The occlusion of an object was simulated by replacing parts of the object by additional
background noise (as a rectangular bar from the middle of the object towards outside with
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Figure 5.19: Different amounts of occlusion of
object 847, starting with no occlusion (left upper
image) to 80% (right lower image) in steps of
10%.

Figure 5.20: Average recognition performance
vs. the distance threshold for different amounts
of occlusion and our predefined settings (28-dim.
PCASIFT, pruning level 2).

an increasing width as depicted in Figure 5.19). With the increasing amount of occlusion
the recognition performance decreases almost linearly, as can be seen in Figure 5.20.
Because features detected on the background do not accurately correspond to any leaf of
the vocabulary tree the nearest neighbors of these descriptors found in the tree are only
weak representatives. By thresholding the distance between the leaf descriptor and the
descriptor in query we can discard these weakly represented features and thus reduce the
noise level. In Figure 5.20 the recognition performance for different distance thresholds
is depicted. As can be seen, a dedicated threshold can be used to increase the average
performance by about 4% compared to using all descriptors without thresholding (denoted
by a minimum distance value of 109 here).

5.3.5 Adding and Removing Object Representations

By now we have only evaluated our approach based on a static vocabulary tree where the
full object database was available from the beginning. However, as such a system is very
inflexible we test how well our methods can perform if only parts of the data are available
during training and others are added at runtime.

First, we built a vocabulary tree given keypoints and descriptors from the first 100
objects. After building the tree, the indexing of the descriptors is performed on these
100 objects. Then we added up to 150 additional objects where the descriptors were not
used for tree creation but were indexed only. In Figures 5.21 and 5.22 the results for
different numbers of objects over the full viewpoint range are shown. Note that using
28-dimensional descriptors and a pruning of level one the database containing 250 objects
has a size of about 10.0MB. The difference in size compared to section 5.3.4 results from
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Figure 5.21: Average recognition performance
on images with background noise for the 28-dim.
PCASIFT descriptor with level 1 pruning and
different numbers of objects in the database.

Figure 5.22: Recognition performance for pro-
jections onto the four different background im-
ages for 250 objects in total over the complete
viewpoint range.

the different vocabulary trees trained on 250 objects and on 100 objects respectively. As
can be seen, the recognition performance is considerably lower due to the much coarser
partitioning in feature space and the inaccurate nearest neighbor assignment during index-
ing. Nevertheless, a very important advantage of this system property is that the database
content can be altered at runtime, meaning that objects exhibiting a moderate amount
of texture (and thus an adequate number of keypoints and descriptors) can be added to
a fixed recognition system at runtime. Thus it is possible to tune a system to a new set
of objects up to a given degree, even if the build process has long time passed and the
vocabulary tree structure has been fixed once and forever. For further evaluations and
extensions to this system features, the reader is referred to the work of Ober et al. [168].

5.3.6 Timing Results and Memory Profile

To test the final performance of our algorithm on our platform we have measured the
average time consumption of each individual step and evaluated the amount of memory
spent on each task. We have divided the approach into several subsections which are
listed in Table 5.1. The scale space generation step, consisting of image filtering and image

subtraction, takes a constant amount of computation time as there is no dependency on the
data being processed. All other steps of the approach are dependent on the number of DoG
points found in the minima/maxima search and updated in the orientation assignment

step. The timing results for the descriptor calculation and the vocabulary tree query step
are computed, given an average detection rate of 100 DoG points. Note that a detection
rate of 50-200 points is reasonable (referring to Appendix B where Figure B.1 shows the
average number of DoG points detected per angle over the complete viewpoint range.) The
high standard deviation in the orientation assignment is due to the possibility that multiple
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Algorithm Avg.Time [ms] Std.Dev.

Scale Space Generation 35.78 0.014

Minima/Maxima Search 35.07 17.18

Orientation Assignment 107.75 98.56

Descriptor Calculation 75.59 11.40

Vocabulary Tree Query 3.62 1.14

Total: 257.82 127.73

Table 5.1: Timing results for the individual algorithmic parts of our approach. The scale space

generation step can also described as combination of image filtering and image subtraction.

Algorithm Memory Consumption [kB]

Scale Space 1,386

PCA Transformation Matrices 219

Final Descriptors 2.7

Vocabulary Tree 12,471

Table 5.2: Memory consumption of the individual algorithmic steps. The size of the data buffer
holding the final descriptors is based on the 28-dimensional descriptor used in our setup and a
detection rate of 100 descriptors.

keypoints might be created or discarded and thus the time for assigning the orientation
varies drastically. Based on the detection of about 100 DoG points, the algorithm can
process 4 frames per second. As most of the parts of the algorithm have no fixed execution
time, it is hard to estimate the system timing performance under real conditions. One way
of predicting the worst case execution time is to limit the number of keypoints allowed
to be detected. By placing an upper limit, say 250 keypoints, we can guarantee a worst
case execution time be calculated to 500ms, which is 2 frames per second. Limiting the
number of keypoints can be performed by putting a threshold on the DoG response and
selecting the 250 keypoints having the highest DoG response.

A severe drawback of simply thresholding is that one cannot guarantee the resulting
set of keypoints and descriptors to capture the appearance of objects well, given a complex
background. In other words, a strategy should be used, such that keypoints are selected
from all image regions with equal probability, to avoid local clustering of keypoints in
highly textured regions. For example, the Adaptive Non-Maximal Suppression (ANMS)
strategy proposed by Brown et al., which was already mentioned previously, can be used
to select a fixed number of interest points from images, spaced equally over the entire
image [37]. For reasons of computational efficiency, in our current approach we left this
as an open issue for optimization.

In Table 5.2 the size of the individual memory buffers is listed. Due to the fixed
spacing in the scale space and the fixed number of octaves, the scale space takes a fixed
amount of 1386kB. The size of the data buffers holding the transformation matrices for
the PCASIFT descriptor takes about 219kB. The amount of memory needed to store the
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descriptors increases linearly with their number. The size of the memory buffer holding
the vocabulary tree is determined by the parameters chosen during the tree construction.
The size of the data buffers for our tree is about 12.1MB.

We have implemented almost all parts of the approach in fixed point as this is basically
necessary for algorithms to perform in acceptable time on our platform. Note that we did
not write any parts of the algorithms in assembler code or made any extensive use of other
optimization techniques like intrinsics.

5.3.7 Calculation Accuracy

As almost all parts of our algorithm are fixed-point versions, we want to investigate
how much performance is lost due to this approximations of all calculations compared
to floating-point version. For these tests we used the first and second image of the Graf-

fiti scene from Mikolajczyk [159], starting with an initial image size of 352x288 pixels.
For a more extensive evaluation, we chose 800 random natural images to get more exact
statistics.

Using our 16-bit fixed point filters we calculated the root mean square Signal-To-Noise
ratio (SNRrms) to floating point filtered images. The evaluation on 800 natural images
revealed that on average the SNR starts from 13.77 dB and decreases about 0.27 dB per
filtering operation, down to about 9.57 dB in our case for the last image in the last octave.

The filtered images are not used directly to detect keypoints, but their differences are
used. Now the question arises how much this approximation influences the extrema search
process and if there is any loss in keypoint localization accuracy. In Figure 5.23 the results
for both versions of the algorithm on both images are shown. The number of points found
using the floating point is 294 and 276, while the number is only 290 and 273 for the fixed
point version. This means that due to the reduced accuracy some points are simply lost
(especially keypoints which are extremas of marginally low hills or shallow sinks in the
scale space). Again, based on our evaluation on 800 natural images we detected 59,062
and 58,769 points, thus we can estimate that a negligible number of 0.45 % of all points
get lost due to the fixed point approximations.

Overlap Error 10.0 20.0 30.0 40.0 50.0 60.0

Repeatability (float) 14.7 50.0 67.6 73.5 82.4 82.4

Repeatability (fixed) 14.7 52.9 67.6 73.5 82.4 82.4

Table 5.3: Repeatability for both versions of the keypoint detector.

Treating the keypoints found by the floating point unit as the true keypoints, a minimal
localization error of 0.16 · 10−3 and 0.66 · 10−3 pixels is introduced in x and y direction in
the fixed point version. To allow for a fair comparison between different interest region
detectors, Mikolajczyk [159] defined some general criteria. The main goal is to measure,
to what extent detected regions overlap exactly the same scene area, given the results of a
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Figure 5.23: Detection results for the first two images of the (resized) Graffiti sequence.

detector on two images of a planar scene taken from different viewpoints. In this respect,
the overlap percentage is defined to be the amount of overlap between detected interest
regions, which are projected back and forth from one image into the other by a known
Homography. The overlap error defines the discrepancy, respectively. The repeatability

is defined to be the average number (or percentage) of corresponding regions detected
in both images, i.e. the number of regions with an overlap error smaller than a given
threshold. In our experiment, we calculated the repeatability values for both versions of
algorithms. As can be seen in Table 5.3, there is no loss in repeatability.

As the descriptor calculation is also performed in fixed point, the question arises
how much the calculation accuracy influences the descriptor performance. In our 800
image database, for all points that are detected coevally in both versions we calculate
36-dimensional PCASIFT descriptors, again in floating point and in fixed point, and nor-
malize them. On average the mean squared error (MSE) is about 8.8134 · 10−4 which is
negligible.
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Algorithm float (wo. fastrts.lib) float (w. fastrts.lib) fixed

Filtering (5x5) 130,038,113 54,586,734 1,091,749

Descriptor Calculation 16,491,804 5,991,365 166,414

Table 5.4: Cycle count for two algorithmic parts of our approach.

5.3.8 Performance Comparison

Here we shortly compare several individual parts of our algorithms calculated in fixed point
and in floating point on our hardware regarding calculation cycles. Due to the complexity
of the approach it is not possible to compare the approach as a whole. However, just
comparing the calculation times for a simple filtering operation and a single descriptor
calculation impressively shows the superiority of the fixed point approach on the hardware
platform used (see Table 5.4).

We have evaluated the floating point approach with the fastrts library, which can be
used for enfastened floating point calculations, enabled and disabled. As can be seen the
fixed point approach is about 119x/50x faster in the filtering and about 99x/36x faster
in the case of the descriptor calculation. Although the use of the library cuts floating
point calculation time by a considerable factor, the advantage is only tiny compared to
the striking speedup using fixed point calculations. It also clearly illustrates the suitability
of fixed point arithmetic for DSPs without hardware floating point support.

5.3.9 Optimization Issues

Concerning different optimization strategies, all parts of the approach can definitely be
optimized to make better use of the hardware resources available. This can mainly be
achieved by using intrinsics and rewriting critical parts in assembler code. However, the
biggest amount of optimization potential lies in the algorithm itself.

First the approach is not optimized to memory swapping issues. A lot of external
memory accesses decreases the overall performance. Moreover most parts of the algorithms
have no fixed execution time. One workaround for this could be an upper threshold on
the number of keypoints to be detected. Another possibility is to perform the descriptor
calculation and nearest neighbor search interchangingly. By doing so, and by putting a
threshold on the ever-changing voting histogram, one can calculate a likelihood ratio for
each object in the database and can interrupt the calculations if a desired confidence rate
is reached.

Concerning the vocabulary tree structure, the indexing strategy for finding the nearest
neighbors is suboptimal in terms of memory accesses. Though the matching path of a single
descriptor through the tree is not predictable in advance, a well-engineered data swapping
strategy has to be implemented. Reorganizing the nearest-neighbor search to minimize
external cache accesses can definitely speed up the search by a considerable factor.
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5.4 Vehicle Reacquisition

As has been shown in the previous section, state-of-the-art object recognition approaches
can be successfully deployed on current smart camera platforms, as long as some general
aspects of embedded systems are considered during development. Now we want to prove
the suitability of the approach for object recognition in one task of surveillance.

Vehicle reacquisition is an interesting topic in the area of traffic monitoring. In the fol-
lowing, we present an application of our algorithm for object reacquisition in smart camera
networks. First, we apply the algorithms described earlier to form a very efficient object
representation, the so called signature. Then we demonstrate, how this representation can
be efficiently communicated throughout a network of smart cameras. At other camera
locations, objects are again described and a specific signature for the object is created.
The matching algorithm compares object signatures and allows for efficient reacquisition
and tracking of the objects through entire camera networks.

One nice feature of this approach is that our algorithms minimize the amount of
information per object to be transmitted between adjacent camera nodes. Another benefit
of this setup is, that it has not to be re-trained for every single camera view. Additionally,
one major goal of our work was to use uncalibrated setups since multi-camera calibration
is still a tedious task. Finally, an important property of our system is that it runs fully
autonomous coevally fulfilling real-time demands. The power of our approach is shown on
the simulation of several traffic scenarios; first, a two-camera setup is considered and then
a medium-scale camera network is simulated. The results presented proof our concept
useful and motivate further research in the area of local features for object fingerprinting
on embedded systems.

5.4.1 Related Studies

Before we start describing our approach in detail, we give a short review of existing meth-
ods in the field of vehicle reacquisition. We emphasize that most of the algorithms in
this field come from the area of computer vision and do not take any embedded system
related issues into account. Thus, in contrast to the work presented here, communica-
tion constraints or computational issues are usually hardly considered, since all necessary
computations are performed on a centralized engine. Additionally, most algorithms are
designed for aerial imagery, thus capturing larger areas but, on the other hand, due to
their lower resolutions are not able to benefit from the usage of local features, which we
propose in this context.

In literature, many work concentrates on object instance recognition and fingerprinting,
mostly for vehicles. For example, Guo et al. [89, 90] address the problem of matching
vehicles across multiple sightings. They extract multiple features, e.g . line segments, of
poor quality aerial images and hold these features in an integrated matching framework.
In one of most recent works Ali et al. [6] use both motion and appearance contexts for
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tracking of vehicles in aerial images. In contrast to Guo et al. they use a clustering scheme
based on the Lyapunov Characteristic Exponent (LCE) to learn the motion context of
multiple trajectories. Additionally, they use the motion of a car to interpret the behavior
of neighbored cars. By using appearance information they are, furthermore, able to handle
occlusions.

Coifman et al. [49] tackle the problem of single loop vehicle reidentification in order to
reliably deviate the traffic flow as well as travel time data. Oh et al. [169] use a Bayesian
approach to identify vehicles in freeway traffic. The probability of identity is derived from
physical observations and events, i.e. trajectories of vehicles, and can be improved online.
Additionally, they are able to derive appearance probabilities for each object. Huang and
Russell [104] use a probabilistic approach to reidentify vehicles on a traffic highway. Color
appearance and transition times are modeled using Gaussian distributions. Kettnaker and
Zabith [119] use a Bayesian formalization to track persons over multiple non-overlapping
cameras. Yet, their system has to be calibrated and the number of possible objects has to
be known.

Shan et al. in [214] present a system capable of reidentifying cars between two non-
overlapping cameras formulated as same-different classification problem without direct
feature matching. Their system, however, builds on a SVM classifier which has to be
trained and uses edge-based object matching which does not achieve comparable discrim-
ination rates compared to, e.g, DoG or MSER based approaches. In the work of Ram
[191], DoG keypoints and MSERs were detected, and SIFT features were used to match
vehicle images across different camera locations. Similarly, Weber used the Multi-Modal

Neighborhood Signature (MNS) to find representative color features for matching vehi-
cles in low-resolution images [257]. Sun et al. [224] perform vehicle reidentification using
a multidetector fusion approach. While detection is performed using a nearest neighbor
classifier and a linear fusion strategy, the features are based on object color and inductive
loop information.

Our proposed system differs from the former mentioned in (i) that the entire system
is designed and implemented in order to run on resource constrained embedded systems,
(ii) we successfully and solely employ local features, as described earlier, for object reiden-
tification, (iii) we concentrate our work on minimizing communication costs rather than
local processing, (iv) we avoid the necessity of tedious learning and (v) our approach works
on spatially separated, uncalibrated, non-overlapping cameras, and finally (vi), no global
optimization has to be performed.

5.4.2 Object Fingerprinting and Reacquisition

As previously mentioned, the entire object fingerprinting and re-identification approach
used here is solely based on local appearance features, as described in section 5.2. Here-
after, the application of our approach to build a compact object representation is intro-
duced.
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Figure 5.24: Illustration of the object signature generation mechanism. After detection of key-
points and descriptor calculation, the leaves representing the nearest neighbors are determined.
The unique indices of the leaves are sorted and stored as object signature.

5.4.2.1 Object Signature and Signature Matching

First, we build a vocabulary tree from a set of descriptors. It is important, that this set
stems from images containing vehicles, or from some sample backgrounds of possible street
scenes. This is relevant, since we want to tune the size of the vocabulary tree to fit our
embedded resources. Descriptors, hence, should be sampled from the space of potential
descriptors, which also can be understood as a try to build a more scene specific visual
alphabet.

The vocabulary tree contains a fixed number l leaves which are numbered in increasing
order and (hopefully) populate the feature space as desired. For generating an object
signature, the keypoints are detected on the object image and corresponding descriptors
are calculated. For each of the t descriptors extracted, the nearest neighbor in feature
space is determined by traversing the vocabulary tree from the root downwards to the
leaves. The unique IDs of the corresponding leaves representing the nearest neighbors are
increasingly sorted to form the final object signature (which is in fact a vector of length
t numbers). This vector is a maximally compact representation given a fixed vocabulary
tree (see Figure 5.24 for illustration).

For matching of individual object signatures, the number of identical elements has to
be determined. Though the object signatures are relatively short vectors (typically in the
order of a few hundred elements) and can be matched very fast, sorting of the elements in
increasing order still simplifies the algorithm complexity and makes more efficient matching
possible.
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5.4.2.2 Removal of Insufficiently Represented Features

Although sample images from the object domain are used for the construction of the
vocabulary tree, populating the whole feature space equally well is almost impossible.
Especially features from background noise or objects not belonging to the object category
often can not be represented well by any leaf of the tree since they populate different areas
of the feature space. We can leverage this to early discard features from being included into
an object signature. If the Euclidean distance, or the Sum-of-Squared distances (SSD),
between a feature and its nearest leaf is above a given threshold θdist, we simply treat it
as noise and eliminate it. By doing so, we can guarantee, that only these features are used
to build a signature, which are not likely to change their affiliation to a specific leaf when
being extracted from different object views.

5.4.3 Camera Network Setup and Framework Overview

It is important to note, that we focus on a network of camera nodes in this application
of our approach. All design considerations are driven by the fact, that the entire system
has to be used in typical outdoor traffic scenarios, as well as under harsh environmental
conditions.

5.4.3.1 Camera Network Setup

In order to ensure an easy and scalable setup, our proposed network architecture is hierar-
chical organized in camera groups. A group simply consists of one or more single cameras
and is defined as a set of neighboring video sensors. Each camera itself is uniquely identi-
fied by its group and camera ID, respectively. A complete camera network is temporally
synchronized using NTP, constituting the only dependency of our system to some kind of
local coordinator. Two types of communication paths are possible, as illustrated in Figure
5.30 showing our multi-camera simulation setup, namely intra-group and inter-group com-
munication. For each camera, the neighboring cameras are defined as internal neighbors
if they are in the same group, or external neighbors if they belong to a different group.

For each new object passing a camera an object signature is created and multicasted
together with a timestamp, a preliminary empty history, and the camera and group ID
to all neighbors defined. The signature is also stored together with a predefined timeout
in a temporary output buffer for later acknowledgment. All receiving cameras store the
incoming message in a dedicated buffer. If objects are passing the individual node, a
signature is created and compared to all available signature messages in the buffer. The
matching score is evaluated against a special threshold. If it is lower than the threshold
it is considered as ”new” (object having entered the scenario in between two neighboring
camera nodes), and processing proceeds as described above. If it is higher than the
threshold, the car is reidentified, the old signature is exchanged by the new one, the history
is updated and the message is multicasted to this cameras neighbors again. Furthermore,
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the camera which had delivered the signature before is notified that the object has been
reidentified.

For overall surveillance purposes two types of notifications to a supervisor might occur.
Either a message is created if the object in the temporary output buffer was not acknowl-
edged within the given timeout. This means that an object might has left the scene in
between two neighboring cameras. Another message is created if an object is passing a
boundary camera node having no more neighbors. Anyway, both types of messages passed
to the supervisor contain the complete tracking history of the object making statistical
flow analysis on a global level possible.

5.4.4 Evaluation

In this section we evaluate our approach in a real-world traffic scenario. First we describe
the way how we collected images for our algorithm evaluations. Then we examine our
methods on two different setups and give detailed results. A discussion of the results and
further notes conclude the section. Note, that all calculations have been simulated under
MATLABTMand finally been examined in the context of our hardware platform. We have
not built a real network of smart cameras due to the high administrative effort. However,
the temporal behaviour and the memory profile of most parts of our approach have already
been evaluated in the previous section 5.3 and remain valid in this context.

Figure 5.25: Projection of various cars onto different backgrounds. We simulate the various levels
of background noise by cropping the vehicle out of the images again with a varying border added
around the object.

5.4.4.1 Data Acquisition and Database Creation

A well-known problem with the evaluation of algorithms for sensor networks is the lack
of training and test data, respectively images in our case. Clearly, collecting data from a
multi-node sensor network is difficult due to time synchronization problems. Moreover, the
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Figure 5.26: 2-Camera setup. Vehicle signatures are communicated between the cameras.

amount of data to be stored and the lack of automatic video annotation tools complicate
the creation of a useful database.

We cope with the problem by applying several tricks from the area of computer vision
to collect a set of pictures with two cameras only, which we can still use to test our
algorithms under maximally realistic conditions for an entire camera network.

Precisely, we recorded 171 vehicles with two different cameras in a roundabout,
in order to get maximal viewpoint changes, and then segmented the objects using a
simple background modeling. Note that the total viewpoint change between images of
the individual vehicles is up to ±30◦. This is a reasonable scenario for the application
of the DoG keypoint detector, but for larger viewpoint changes other methods have
to be used [159, 157]. Additionally, we took 29 pictures of many different urban
traffic scenarios. Having this basic data setup, we projected the segmented objects
to the different backgrounds and varied the ratio between background and foreground
object, thus, allowing for arbitrary reidentification simulation under various amounts of
background noise and various viewpoints (see Figure 5.25 for illustration). For simplicity
we assume, that in a practical setup a preliminary detection result is available, such
as provided by the detection approach described in the previous chapter. In other
words, the re-identification algorithm is only applied, if an object is present in the
image and the major part of an image is covered by only this single object in query.
Partial occlusions or parts of other objects are sufficiently well simulated by background
noise.

The vocabulary tree used for our evaluation contains about 43.000 leaves, which is
equivalent to about 5.1 MB of memory needed for storage. The tree was purely built from
images of street crossings and vehicle images from an other database. We did not prepare
the tree in any additional way, say, we did not employ any leaf pruning strategy. The high
performance achieved, as shown in the following evaluations, is a clear indication, that
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Method Data to Recognition

transmit Performance

SIFT keys 19.060,8 kB 90,64 %

PCA-SIFT keys 5.360,8 kB 82,11 %

Object 148,9 kB 87,60 %

Signatures

(no removal)

Object 49,5 kB 88,18 %

Signatures

(removal)

Table 5.5: The amounts of data to be trans-
mitted between individual nodes and the recog-
nition performances for our two-camera setup.
We assume that all information is encoded in
integer or float units with 4 bytes each.

Figure 5.27: Recognition performance for dif-
ferent levels of background noise. For example,
50% background noise indicates that the object
only covers half of the total image area.

even a more restrictive memory usage policy still leads to adequate recognition accuracy
and satisfying system performance.

5.4.4.2 Two-Camera setup

In our first experiment we simulate a camera network consisting of two single cameras,
as depicted in Figure 5.26. For simplicity we assume that vehicles are simply passing the
scenario in random order without leaving or entering the scenario in between the cameras.
Furthermore, we simulate traffic in one direction of the road only, so cars are not allowed
to turn around. Our simulation runs in a 10000 ticks long time loop and the vehicles pass
the first camera in random order and random intervals. Each vehicle has 500 ticks at max
to pass the second camera. Thus, the buffer timeout of the cameras is set to 500 ticks. To
highlight the benefits of our approach we compare it with a reacquisition system based on
pure matching of SIFT or PCA-SIFT descriptors.

In Figure 5.27, the dependency of the recognition performance on the additional
amount of background noise is depicted. To illustrate the importance of removing in-
adequately represented features, we have evaluated our approach for both strategies, with
and without removal. In the first case the recognition performance significantly drops as
the influence of noise on the signature generation increases. In the latter case the recogni-
tion performance only slightly decreases. This indicates that a rough object segmentation,
together with our removal strategy, is sufficient to allow for satisfying performance. Note
that we have not evaluated our approach for noise levels below 30% because using a sim-
ple bounding box around the segmented car already includes at least 25% of background
clutter. Note, that the results for a significant amount of background noise agree with our
previous results from section 5.3.4.
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Figure 5.28: Total Transmission Costs for dif-
ferent levels of background noise. As the differ-
ence in the amount of data is that severe, loga-
rithmic scaling is chosen.

Figure 5.29: Information Content for different
levels of background noise. While the amount of
information contained in a single transmission
unit ([kB]) is low in matching-based approaches,
it is high in our tree-based approach.

In Table 5.5 the amount of data, together with the recognition performance achieved
for different types of strategies for fully segmented vehicles (no background noise), is
summarized. While our strategy already reduces the amount of data to be sent by a
dramatic factor, removing noisy features once again cuts the transmission costs by 2/3.
As can easily be seen, our setup achieves satisfying results, coevally minimizing the amount
of data to be transmitted between individual camera nodes. In Figure 5.28, the amount
of data to be transmitted for various levels of background noise is depicted. While the
transmission costs for our tree-based approach only slightly increase, the transmission costs
for matching-based approaches explodes, as there is no mechanism to early discard bad
features. Figure 5.29 shows the amount of information contained in a single transmission
unit ([kB]). It is easy to see that our approach nicely compresses the information necessary,
while a high amount of data with low information content is transmitted in matching-
based approaches. Note that our vocabulary tree based method performs more than two
powers of ten better than the original approach based on PCA-SIFT or SIFT feature
matching.

5.4.4.3 Multi-Camera Setup

For this experiment the camera network setup is as depicted in Figure 5.30. The conditions
for vehicle movements are the same as described in the previous section, but additionally
the paths of the cars through the scenario are determined randomly. For ease of illustration
we allowed all cars in either case solely to enter the scenario from one group. However,
note that we achieved similar performance rates with arbitrary entry groups.

In Figure 5.31 we have depicted the traffic flows for our setup based on a random
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Figure 5.30: Multi-Camera setup. Intra-group communication of signatures and inter-group
communication occurs between separate camera groups.

traffic setup and with four different entry groups. Though recognition rates in each
case depend on the entering group, for all four starting conditions our framework
achieved at least 87% of successful vehicle tracking through the entire scenario. Note
that, although compared to the two-camera setup one might expect a significant worse
recognition rate, the relative high performance comes also from the fact that due to
the higher amount of cameras, each camera has to handle a smaller signature message
buffer.

5.5 Concluding Notes

In the previous experiments, we showed, that state-of-the-art object recognition meth-
ods can be successfully deployed on DSP-based embedded systems. It is essential, that
the development of algorithms is strongly hardware oriented, such that a recognition sys-
tem is real-time capable and fulfills the predefined criteria in terms of accuracy. As we
were interested in a principal evaluation of current methods on embedded hardware,
only a premature implementation of the methods exist. However, in the context of
our vehicle reacquisition applications, the experimental evaluation has shown, that al-
ready this system would be able to work at about 3 frames per second on an image
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Figure 5.31: Four different charts indicating the measured traffic flow in percent. In each illus-
tration a different entry group is chosen. The groundtruth is illustrated in gray.

stream of 352x288 pixel resolution. This is equivalent to an average traffic flow of about
10000 cars per hour. Needless to say, that a more in-depth optimization of the indi-
vidual algorithm parts would result an a more performant system with higher through-
put.

An important property of our approach is that it nicely scales with the number of
objects. Because our approach is based on highly distinctive local features, a fixed vocab-
ulary can be used to build up representations for several hundred objects. Furthermore,
applying the algorithm in the application proposed, the communication effort between
individual camera nodes can be reduced drastically, without a remarkable loss in reacqui-
sition performance. As communication costs are an important issue in the development
of software for entire sensor networks, we strongly emphasize, that our algorithm is a
valuable option for setting up a recognition - or reacquisition - system in a smart camera
network of larger scale.

One of our main findings is, that it is essential to select suitable algorithms
for building a recognition framework, given the properties of embedded hardware.
Algorithms should consist of a set of operations, which can be executed efficiently
on DSPs. In this respect, filter-based algorithms and methods mainly consisting of
MAC instructions are very suitable. By choosing algorithms of that type, drawbacks
of embedded systems in terms of computational power can be turned into advantages,
given an architecture especially optimized for parallelism and fast and recurring
computations. Another important conclusion is, that it is inevitable to find ways to cope
with limited memory resources. We showed, that even a moderate amount of storage
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capacity is sufficient to perform high-level vision algorithms on smart cameras. To
achieve this goal, we reduced the amount of memory needed at many different points
of the approach, finally arriving at a finely tunable recognition framework. Hence, we
can summarize, that, beside the selection of suitable algorithms, also the reduction
in memory requirements plays a vital role in algorithm development for embedded
systems.

The need for object recognition capabilities, especially for mobile and portable devices,
is evident. Features, like the incremental adding and removing of objects at runtime,
bring visual object recognition closer to visionary applications in real world scenarios. For
example, in supermarkets autonomous shopping carts can be used, which collect items
autonomously given a shopping list. In household robotics autonomously cooking robots
can be used to prepare dinner, while everybody is at work. The area of recognition is
large, and we will see a lot of applications being introduced in the next few years. We are
certain, that local feature based recognition technology is a powerful tool, which will also
proof valuable on embedded systems in the near future.



People do not like to think. If one thinks, one
must reach conclusions. Conclusions are not al-
ways pleasant.

Helen Keller

US blind & deaf educator, 1880 - 1968

Chapter 6

Conclusion

I
n this thesis, we were concerned with the current state-of-the-art in object detection
and object recognition for visual surveillance on embedded systems. We discussed
several aspects and typical problems in detail, and proposed new approaches espe-

cially addressing and tackling the limitations appointed by current hardware platforms.
We described the state-of-the-art in smart camera development, and discussed several is-
sues of hardware related algorithm realization. We referred to a large number of related
publications, which deal with the topic of object detection and object recognition in gen-
eral, and also focus on the issues of approaches involved with the research in the area of
embedded systems. On this account, we will summarize our results in object detection
and object recognition, and discuss several modifications in the following.

6.1 Discussion

Following the introduction and motivation of our work on visual surveillance for smart
cameras in Chapter 1, we described current state-of-the-art smart camera platforms in
Chapter 2. We summarized the most important properties of embedded systems, and
also discussed the aspects of software development for smart sensors. We pinpointed
issues like limited memory and computational resources, or the need for autonomous
processing and minimized communication effort to server nodes. In Chapter 3, we gave a
rather comprehensive overview about current research in the area of object detection and
recognition. We listed the most important approaches from computer vision research, and
also listed numerous methods proposed especially for embedded platforms.

For object detection, we have presented a flexible framework in Chapter 4, which is
able to perform in real time, without the need for relying on any presegmentation of the
object. We vote for several adaptations and modifications, such that object detection can
be realized in a very compact and efficient fashion, achieving highly accurate results in real
time. We showed, that it is essential to reduce the computational complexity of a detector
to allow for acceptable performance in terms of speed. In other words, on the algorithmic
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level, the number of weak classifiers, and coevally the size of the detector, should be
reduced to the best possible, which allows for a considerable speedup without a nameable
loss in detection accuracy. Moreover, we demonstrated, that considerable improvements
are achieved by considering the suitability of DSP-based systems for particular types
of parallelism, like instruction level and operation level parallelism. We evaluated our
approach on three different datasets and benchmarked several of the modifications and
adaptations. It is worth to note, that the results achieved suggest the deployment of our
approach in a larger framework for visual surveillance, for example in the area of traffic
monitoring.

Similarly, in Chapter 5 we proposed the deployment of a state-of-the-art object recog-
nition setup on our prototypical DSP-based platform. We have used the DoG and SIFT
algorithms for finding distinctive local features on objects and for building descriptors. A
visual vocabulary tree is used to organize object representations by collections of local fea-
tures in an efficient way. By using dedicated compression mechanisms, we demonstrated
the plausibility of our approach on a moderate size database, allowing for operation at real
time speeds and achieving remarkable recognition performance. As in object detection,
our experiments showed, that fixed-point arithmetic leads to a significant speedup of our
approach, without sacrifice of accuracy. We evaluated our algorithm in the context of a
real world application, namely vehicle reacquisition on residential streets. We simulated a
small camera network, and demonstrated, that the communication effort between adjacent
camera nodes can be minimized, using our algorithm for building a compact representa-
tion of passing vehicles. The results achieved encourage a further investigation of the
algorithm in a large-scale camera network and further motivate work on local features for
object recognition in robotics or navigation on embedded smart cameras.

6.2 Outlook

When developing the approaches proposed in this thesis, one goal was to include the newest
accomplishments in research on embedded systems and computer vision. In this respect,
the most recent algorithms were considered as base for our own development. However,
a few further improvements and investigations in both fields, object detection and object
recognition, are recommended, to achieve higher robustness and higher performance in
terms of speed.

In object detection, we have used the standard Viola-Jones algorithm as an initial
step for real-time object detection on our prototypical DSP-based platform [250]. It was
shown, that a massive reduction in the number of weak classifiers is necessary, to allow
for real-time performance in a practical application of the approach. On this account,
we have proposed Inter-Stage Feature Propagation, originally developed by Šochman and
Matas [252], which has turned out to achieve a considerable improvement in detector
compactness and speedup over the original approach. However, for further improving the
detector we propose the investigation of WaldBoost, which was introduced by Šochman
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and Matas [253]. Waldboost is the most suitable algorithm, generating the most com-
pact, and thus fastest, detector currently available by reducing the number of features
to one in each cascade. Related to product development, an important issue is the reuse
of detectors across different scenarios. Adaptability of an existing detector to different
scenarios is a key feature to allow for deployment of detectors in large scale. A closer
investigation of the performance loss or the degree of reusability, given a fixed set of
training examples, would be of interest. In the current approach, we have not considered
multiple detectors for different types of objects at the same time, e.g . detectors for cars
and trucks. In fact, the major problem is the need for hypothesising, given multiple ob-
servations of different classes. This problem is strongly related to multiple-sensor fusion,
which is also a complex topic of research. A general investigation or approach, maybe
combining multiple rudimentary detector stumps, such as in the work of Torralba [242],
would be of great help to build a flexible setup for detecting objects from multiple different
classes.

Like other promising approaches for object recognition, we have also used vocabu-
lary trees as base for our embedded object recognition setup. We have used DoG key-
points and SIFT keys, as originally proposed by Lowe [142]. However, the approach is
not limited to any special type of detector or descriptor, so other possible choices in-
clude the set of detectors and descriptors investigated by Mikolajczyk et al. [159, 157].
Furthermore, we have not used any post-verification step in our recognition setup. The
use of additional geometric information about neighboring interest points could definitely
improve the recognition accuracy, however, being still problematic due to the limited
amount of memory available on embedded systems. One possible solution would be the
use of Co-occurrences, as proposed by Winter et al. [261]. Given a concrete application
of the recognition approach, we have just simulated a rather small smart camera net-
work, due to the lack of hardware available and the high administrative effort needed
for a larger evaluation of the approach. However, the initial results are promising and
encourage further research in that direction. Possible extensions to increase robustness of
the approach at reasonable costs would be the use of additional features based on color
combinations, such as the Multimodal Neighborhood Signature (MNS) method, proposed
by Koubaroulis et al. [125] and already used by Weber [257]. Especially in the context
of vehicles, color information might help to increase recognition performance and reduce
mismatches.

For future research and development, a lot of high-level goals can be listed,
particularly the deployment of adaptive approaches on smart cameras. This includes
autonomous calibration of entire camera networks, and the capability to find
communication networks with minimal energy consumption [46, 60, 61]. Furthermore,
in the area of object detection, the unsupervised learning of object appearance by
using online Boosting is desirable. In the area of object recognition, the investigation
of categorization issues is an important issue, which would provide many possibilities
for application of object recognition in categorization tasks. The number of desirable
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improvements is large, and lot of work has to be done in the future. However,
as the development of algorithms advances, we will see visionary ideas become
reality, and, for sure, mobile and embedded devices will also play a vital role in this
context.



Appendix A

Abbreviations and Terms

The following abbreviations and terms are used frequently in this thesis. However, we
only write out the single abbreviations here. A more elaborate discussion of individual
terms is given throughout the thesis.

• ALU Arithmetic Logic Unit

• ANSI American National Standards Institute

• ASIC Application Specific Integrated Circuit

• CISC Complex Instruction Set Computer

• CMOS Complementary Metal Oxide Semiconductor

• DMA Direct Memory Access

• DoG Difference of Gaussians

• DRAM Dynamic Random Access Memory

• DSP Digital Signal Processor

• FPGA Field Programmable Gate Array

• FPU Floating Point Unit

• GPU Graphics Processing Unit

• IC Integrated Circuit

• IEEE Institute of Electrical and Electronics Engineers, Inc.

• JTAG Joint Test Action Group

• MAC Multiply-ACcumulate
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• MATLAB High level computing language developed by Mathworks

• MEX MATLAB Executable

• MPEG Moving Picture Experts Group

• PCA Principal Component Analysis

• PDA Personal Digital Assistant

• RISC Reduced Instruction Set Computer

• SIFT Scale Invariant Feature Transform

• SIMD Single Instruction Multiple Data

• SoC System on Chip

• SDRAM Synchronous Dynamic Random Access Memory

• SRAM Static Random Access Memory

• TI Texas Instruments

• VLIW Very Long Instruction Word

• VLSI Very Large Scale Integration



Appendix B

ALOI object selection

In Table B.1 the IDs of the 250 objects selected from the ALOI database for our object
recognition experiments are listed. These objects have been selected because they deliver
the highest number of DoG points. To illustrate this in Figure B.1 the number of DoG
points for the top 500 ALOI images is depicted.

Figure B.1: Number of DoG points for the first 500 objects in the ALOI database decreasingly
sorted.
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Object IDs

2 111 234 329 466 558 629 761 835 927
9 119 239 330 467 575 637 766 838 928
18 126 243 335 469 576 640 769 840 930
20 133 246 345 478 577 648 770 842 938
37 135 247 355 488 578 673 771 846 940
39 138 253 357 489 580 676 772 847 942
41 151 263 362 498 581 678 774 850 945
46 154 269 368 499 582 684 782 853 946
48 155 282 369 511 583 687 783 854 958
49 156 284 374 517 584 688 795 858 959
71 157 285 377 519 588 696 796 861 960
72 160 293 381 525 595 698 797 864 963
74 162 297 405 530 599 703 798 868 964
75 185 298 406 531 602 704 805 872 967
76 195 300 407 534 606 729 807 874 969
77 199 301 445 538 610 731 809 876 972
86 210 307 447 539 612 736 811 877 973
93 212 310 448 541 615 740 814 879 974
95 216 313 451 542 616 744 815 890 975
99 219 315 453 543 618 746 821 893 977
101 222 317 455 544 619 748 828 907 978
103 225 319 456 546 621 749 829 909 985
104 226 322 458 547 622 753 830 910 987
108 227 323 463 554 625 755 832 913 990
109 229 325 464 556 627 756 834 917 994

Table B.1: Object IDs selected for experiments.
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Key publications

Publications developed during the research work are reported in chronological order in the
following report. The aims and the key findings of each paper are shortly described by
the abstract of the individual paper.

• Arth, C. and Leistner, C. and Bischof, H. (2006). TRICam - An Embedded Platform
for Remote Traffic Surveillance. Proceedings of the 2nd Workshop on Embedded

Computer Vision, IEEE International Conference on Computer Vision and Pattern

Recognition (ECV’06), pp 125–125. [10]

Abstract: In this paper we present a novel embedded platform, dedicated espe-
cially to the surveillance of remote locations under harsh environmental conditions,
featuring various video and audio compression algorithms as well as support for lo-
cal systems and devices. The presented solution follows a radically decentralized
approach and is able to act as an autonomous video server. Using up to three Texas
InstrumentsTMTMS320C6414 DSPs, it is possible to use high-level computer vision
algorithms in real-time in order to extract the information from the video stream
which is relevant to the surveillance task. The focus of this paper is on the task of
vehicle detection and tracking in images. In particular, we discuss the issues specific
for embedded systems, and we describe how they influenced our work. We give a de-
tailed description of several algorithms and justify their use in our implementation.
The power of our approach is shown on two real-world applications, namely vehicle
detection on highways and license plate detection on urban traffic videos

• Martin Winter and Sandra Ober and Clemens Arth and Horst Bischof. Vocabulary
Tree Hypotheses and Co-Occurrences. Proceedings of the 12th Computer Vision
Winter Workshop (CVWW’07) - BEST PAPER AWARD, [261]

Abstract: This paper introduces an efficient method to substantially increase the
recognition performance of a vocabulary tree based recognition system. We propose
to combine the hypothesis obtained by a standard inverse object voting algorithm
with reliable descriptor co-occurrences. The algorithm operates on different depths
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of a standard k-means tree, coevally benefiting from the advantages of different
levels of information abstraction. The visual vocabulary tree shows good results
when a large number of distinctive descriptors form a large visual vocabulary. Co-
occurrences perform well even on a coarse object representation with a few number
of visual words. We demonstrate the achieved performance increase, robustness
to occlusions and background clutter in a challenging object recognition task on a
subset of the Amsterdam Library of Object Images (ALOI).

• Arth, C. and Leistner, C. and Bischof, H. (2007). Robust Local Features and their
Application in Self-Calibration and Object Recognition on Embedded Systems Pro-

ceedings of the 3nd Workshop on Embedded Computer Vision, IEEE International

Conference on Computer Vision and Pattern Recognition (ECV’07) - BEST PAPER

AWARD, pp 1–8. [12]

Abstract: In recent years many powerful Computer Vision algorithms have been in-
vented, making automatic or semiautomatic solutions to many popular vision tasks,
such as visual object recognition or camera calibration, possible. On the other hand
embedded vision platforms and solutions such as smart cameras have successfully
emerged, however, only offering limited computational and memory resources. The
first contribution of this paper is the investigation of a set of robust local feature
detectors and descriptors for application on embedded systems. We briefly describe
the methods involved, i.e. the DoG (Difference of Gaussian) and MSER (Maximally
Stable Extremal Regions) detector as well as the PCA-SIFT descriptor, and discuss
their suitability for smart systems and their qualification for given tasks. The sec-
ond contribution of this work is the experimental evaluation of these methods on
two challenging tasks, namely fully embedded object recognition on a moderate size
database and on the task of robust camera calibration. Our approach is fortified by
encouraging results we present at length.

• Arth, C. and Limberger, F. and Bischof, H. (2007). Real-Time License Plate Recog-
nition on an Embedded DSP-Platform Proceedings of the 3nd Workshop on Em-

bedded Computer Vision, IEEE International Conference on Computer Vision and

Pattern Recognition (ECV’07), pp 1–8. [13]

Abstract: In this paper we present a full-featured license plate detection and recog-
nition system. The system is implemented on an embedded DSP platform and
processes a video stream in real-time. It consists of a detection and a character
recognition module. The detector is based on the AdaBoost approach presented by
Viola and Jones. Detected license plates are segmented into individual characters by
using a region-based approach. Character classification is performed with support
vector classification. In order to speed up the detection process on the embedded
device, a Kalman tracker is integrated into the system. The search area of the de-
tector is limited to locations where the next location of a license plate is predicted.
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Furthermore, classification results of subsequent frames are combined to improve
the class accuracy. The major advantages of our system are its real-time capability
and that it does not require any additional sensor input (e.g. from infrared sensors)
except a video stream. We evaluate our system on a large number of vehicles and
license plates using bad quality video and show that the low resolution can be partly
compensated by combining classification results of subsequent frames.

• Sandra Ober and Martin Winter and Clemens Arth and Horst Bischof (2007). Dual-
Layer Visual Vocabulary Tree Hypotheses For Object Recognition Proceedings of the
IEEE International Conference on Image Processing (ICIP’07), vol VI, pp 345–348.
[168]

Abstract: This paper introduces an efficient method to substantially increase the
recognition performance of a vocabulary tree bas-ed recognition system. We propose
to enhance the hypothesis obtained by a standard inverse object voting algorithm
with reliable descriptor co-occurrences. The algorithm operates on different layers
of a standard k-means tree benefiting from the advantages of different levels of
information abstraction. The visual vocabulary tree shows good results when a large
number of distinctive descriptors form a large visual vocabulary. Co-occurrences
perform well even on a coarse object representation with a small number of visual
words. An arbitration strategy with minimal computational effort combines the
specific strengths of the particular representations. We demonstrate the achieved
performance boost and robustness to occlusions in a challenging object recognition
task.

• Arth, C. and Leistner, C. and Bischof, H. (2007). Object Reacquisition and Tracking
in Large-Scale Smart Camera Networks Proceedings of the 1st IEEE International

Conference on Distributed Smart Cameras (ICDSC’07), pp 156–163. [11]

Abstract: Object reacquisition or reidentification is the process of matching objects
between images taken from separate cameras. In this paper, we present our work
on feature based object reidentification performed on autonomous embedded smart
cameras and applied to traffic scenarios. We present a novel approach based on
PCA-SIFT features and a vocabulary tree. By building unique object signatures
from visual features, reidentification can be done efficiently coevally minimizing the
communication overhead between separate camera nodes. Applied to large-scale
traffic scenarios, important parameters including travel time, travel time variability,
section density, and partial dynamic origin/destination demands can be obtained.
The proposed approach works on spatially separated, uncalibrated, non-overlapping
cameras, is highly scalable and solely based on appearance-based optical features.
The entire system is implemented and evaluated with regard to a typical embedded
smart camera platform featuring one single Texas InstrumentsTMfixed-point DSP.
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• Donoser, M. and Arth, C. and Bischof, H. (2007). Detecting, Tracking and Rec-
ognizing License Plates Proceedings of the Asian Conference On Computer Vision

(ACCV’07), pp 447-456. [64]

Abstract: This paper introduces a novel real-time framework which enables detec-
tion, tracking and recognition of license plates from video sequences. An efficient
algorithm based on analysis of Maximally Stable Extremal Region (MSER) detec-
tion results allows localization of international license plates in single images without
the need of any learning scheme. After a one-time detection of a plate it is robustly
tracked through the sequence by applying a modified version of the MSER tracking
framework which provides accurate localization results and additionally segmenta-
tions of the individual characters. Therefore, tracking and character segmentation
is handled simultaneously. Finally, support vector machines are used to recognize
the characters on the plate. An experimental evaluation shows the high accuracy
and efficiency of the detection and tracking algorithm. Furthermore, promising re-
sults on a challenging data set are presented and the significant improvement of the
recognition rate due to the robust tracking scheme is proved.

• Arth, C. and Bischof, H. (2008) Real-Time Object Recognition using Local Features
on a DSP-based Embedded Systems Journal of Real-Time Image Processing, to
appear. [9]

Abstract: In the last few years object recognition has become one of the most
popular tasks in computer vision. In particular, this was driven by the development
of new powerful algorithms for local appearance based object recognition. So-called
”smart cameras” with enough power for decentralized image processing became more
and more popular for all kinds of tasks, especially in the

eld of surveillance. Recognition is a very important tool as the robust recognition
of suspicious vehicles, persons or objects is a matter of public safety. This simply
makes the deployment of recognition capabilities on embedded platforms necessary.
In our work we investigate the task of object recognition tion based on state-of-
the-art algorithms in the context of a DSP-based embedded system.We implement
several powerful algorithms for object recognition, namely an interest point detector
together with an region descriptor, and build a medium-sized object database based
on a vocabulary tree, which is suitable for our dedicated hardware setup. We care-
fully investigate the parameters of the algorithm with respect to the performance on
the embedded platform. We show that state-of-the-art object recognition algorithms
can be successfully deployed on nowadays smart cameras, even with strictly limited
computational and memory resources.



In science one tries to tell people, in such a
way as to be understood by everyone, something
that no one ever knew before. But in poetry, it’s
the exact opposite.

Paul Dirac

English physicist in the US, 1902 - 1984
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