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Abstract. We propose simple and efficient methods for estimating the
camera motion between two images when this motion is small. While cur-
rent solutions are still either slow, or unstable in case of small translation,
we show how to considerably speed up a recent stable but slow method.
The reasons for this speed-up are twofold. First, by approximating the
rotation matrix to first order, we obtain a smaller polynomial system to
be solved. Second, because of the small rotation assumption, we can use
linearization and truncation of higher-order terms to quickly obtain a
single solution. Our experiments show that our approach is both stable
and fast on challenging test sequences from vehicle-mounted cameras.
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1 Introduction

Estimating the rotational and translational movement of a calibrated camera
between two images is a fundamental problem in computer vision, with many
applications such as visual odometry, structure-from-motion, and simultaneous
localization and mapping (SLAM). While many solutions to the relative pose
problem have been proposed in the past [3, 4, 9, 12, 13, 15, 17–20, 22, 23, 25], ex-
isting solutions have still three critical issues. The first issue is numerical insta-
bility when the translation is small with respect to the scene depth. A second
issue is multiplicity of solutions; even in the minimal case of five point correspon-
dences, up to ten camera pose solutions are possible, and additional processing
is required to select the correct solution. Third, while recent work has shown
that the rotation can be estimated independently of the translation [13], thus
avoiding the instability with small translation, this method is much slower than
the state-of-the-art.

In this work, we introduce novel solution procedures for solving for the ro-
tation independent of the translation. These solvers are as fast or faster than
the state-of-the-art, and as accurate for small rotations. Our key observation is
that, in many practical cases, the amount of rotation is small, and we can safely
approximate the rotation matrix to the first-order. Using this approximation, we
obtain a system of ten polynomial equations involving only the rotation parame-
ters, which is a smaller system than the thirty equations required for the general
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case [13]. Once the rotation estimate is obtained, the translation can easily be
estimated as well.

Our evaluations on synthetic and real datasets show that our solutions are
as fast or faster than existing methods, without any significant loss in accuracy
for small motions. The simplicity of our solvers are such that they are suitable
for implementation in embedded hardware for ground vehicles or low-powered
micro-aerial vehicles, or for application with high-speed cameras.

The remainder of the paper is structured as follows. We first review related
work in Section 2. We then formalize the approximated relative pose problem in
Section 3, and describe various solution procedures in Section 4. In Section 5, we
compare our methods to state-of-the-art algorithms applied to visual odometry
on two public datasets.

2 Related Work

The relative pose problem, the computation of the camera motion between two
images from point correspondences, is an essential problem encountered in pho-
togrammetry and computer vision with an eventful history. The first solution
to the five-point problem was proposed by Kruppa [14], who proved that the
problem has at most eleven solutions. Demazure [3], Faugeras [4], Maybank [20]
and others improved upon this approach later. They showed that this problem
has at most ten solutions in general, including complex ones, being the roots of
a tenth-degree polynomial.

While Kruppa proposed an algorithm with little practical applicability, so-
lutions in the context of modern Computer Vision based on eight and seven
points were proposed by Longuet-Higgins [19] and Maybank [20]. A six-point
solution was introduced by Philip [23], extracting the roots of a thirteen-degree
polynomial. Nistér improved on this approach, solving a tenth-degree polyno-
mial corresponding to the exact problem difficulty [22]. His solution is based
on QR-factorization, Gauss-Jordan elimination on a 10 × 20 matrix, reduction
to a single polynomial, and Sturm sequences for root-finding. From there on,
algorithms based on five point correspondences, the minimal number of required
correspondences, raised special interest for their application in a hypothesize-
and-test framework [5].

A first solver based on Gröbner bases [2] was given by Stewénius et al . [24].
Alternative formulations also based on Gröbner bases were proposed by Kukelova et
al . [15] and Kalantari et al . [9]. Li et al . proposed relatively simpler solutions for
the five-point and six-points problem based on the hidden variable resultant [17,
16]; however, this is less efficient.

More recently, Lim et al . proposed estimating the rotation and translation
separately, relying on a special feature correspondence distribution [18]. Kneip et
al . later proposed considering rotation and translation separately in the general
case [13]. Their algorithm still exhibits instability in cases of negligible trans-
lational motion, which need to be explicitly detected. They parameterized the
rotation with a 3×3 matrix, which requires adding twenty additional constraints
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which enforce the matrix to be orthogonal and have unit determinant. They then
used the method of Gröbner bases to find up to twenty solutions for the rotation
from a matrix of size 66×197 [13]. The authors also mention that they tried the
Cayley rotation parameterization [1], which has the minimal three parameters,
but leads to a larger and slower solution procedure. Kneip et al . later proposed
an iterative solution which is more stable, but in practice requires using more
than the minimal five correspondences in order to avoid local minima [12].

The work most closely related to ours is that of Stewenius et al. [25], who
also use a first-order approximated rotation matrix. They briefly mention that
it is possible to solve for the rotation independently of the translation, but then
proceed to describe a method for instead computing the translation. This leads
to a solver which is faster than Nistér’s solver [22]. However, in this work we
choose to solve for the rotation because it leads to an even faster solver based
on linearization and truncation of higher-order terms.

3 Problem Statement

For the sake of completeness, we briefly describe here the method of Kneip et
al . [13], which is our starting point. Let’s consider two images of a rigid scene.
The essential matrix E relates corresponding image locations ui and vi expressed
in homogeneous coordinates, in the first and second images, respectively, by

vTi Eui = 0 , (1)

with E = [t]×R, where R and t are the rotation matrix and translation vector of
the rigid motion of the camera between the two images. This can be re-arranged
to isolate the rotation and translation parameters:

(uTi R
T [vi]×) · t = 0 . (2)

Five point correspondences between the two images give five equations of the
form of Eq. (2), which can be arrange into an equation system:

A(r) · t = 0 , (3)

where A(r) is a 5 × 3 matrix and r are the parameters of the rotation. Since
A(r) has a null vector, it must be of at most rank two. Hence, all the 3× 3 sub-
determinants |Aijk| of A(r) must be zero. This gives

(
5
3

)
= 10 equations which

only involve the rotation parameters:

|Aijk| = 0 ∀(i, j, k) ∈ S , (4)

with S = {(1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 3, 4), (1, 3, 5), (1, 4, 5), (2, 3, 4), (2, 3, 5),
(2, 4, 5), (3, 4, 5)}.

Kneip et al . [13] solve these equations in the general case, which requires
twenty additional constraints on the rotation matrix and results in a slow solver.
We show below that under the assumption of a small motion, solving these
equations becomes very simple.
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4 Approach

In our approach, we first introduce an approximation of the rotation matrix, and
use it to rewrite the system of equations (4). We then show how this system can
be simplified, and very easily solved.

We assume that the motion between the two images is small. This allows us
to replace the rotation matrix R by its first-order expansion:

R̂(r) = I + [r]× , (5)

where r = [r1, r2, r3]T is a three-vector. The corresponding exact rotation matrix
can be retrieved as R(r) = expSO(3)(r). This gives us a simple parameterization
for the rotation matrix. Plugging it into the ten equations of (4) leads us to a
system of ten cubic polynomials in twenty monomials:

M10×20 x = 0 , (6)

with

x = [r31, r
2
1 r2, r1 r

2
2, r

3
2, r

2
1 r3, r1 r2 r3, r

2
2 r3, r1 r

2
3, r2 r

2
3, r

3
3,

r21, r1 r2, r
2
2, r1 r3, r2 r3, r

2
3, r1, r2, r3, 1]T .

(7)

The following sections give three different solution procedures for solving this
system of equations.

4.1 Reduction to a Single Polynomial

The system of equations given by Equation 6 has the same form as found in the
five-point algorithm of Nistér [22], and thus can be solved in the same manner,
namely, reduction to a single tenth-degree polynomial in r3. The root-finding
procedure leads to ten solutions for r3; corresponding solutions for r1 and r2 are
found by back-substitution.

Sturm sequences are used to bracket the roots, which are then quickly located
exactly through bisectioning. In our case, we speed up the root-finding procedure
by restricting our search to reasonable bounds on the rotation magnitude. In
practice we assume that solutions for r3 should lie within −15 and 15 degrees.

4.2 Neglecting the Cubic Terms and Solving by Linearization

Our assumption of a small motion implies that the components of the r vector are
small. It follows that the higher-order terms in the equations (6) are negligible in
comparison to lower order terms. Neglecting the cubic terms in Eq. (6) reduces
the system to only ten quadratic equations in ten monomials, where

N10×10 y = 0 , (8)

and
y =

[
r21, r1 r2, r

2
2, r1 r3, r2 r3, r

2
3, r1, r2, r3, 1

]T
. (9)
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These monomials are the second half of the x vector defined in Eq. (7).
Eq. (8) is a polynomial system in the components of r. However, we noticed

that in practice we can solve it by linearization [10], that is, we solve it as if it
was a linear system. Since the last component of y is 1, we use the Cholesky
decomposition method to find the other components, as it is the fastest method.

This method of solving is much faster than reduction to a single polynomial.
It also produces a single solution instead of up to ten. However, this increased
speed comes at the cost of decreased robustness to larger rotations, and greater
sensitivity to noise.

4.3 Six-Point Least Squares Solution

If we build Eq. 4 using six point correspondences instead of five, we obtain(
6
3

)
= 20 equations. This gives a system of twenty cubic equations in twenty

monomials.
M20×20 x = 0 , (10)

This system can also be solved as a linearized least-squares problem, this time
without having to remove higher-order terms as we did for our five-point solution.

The speed of this method is roughly on par with the solution by reduction to
a single polynomial, but it produces a single solution instead of ten. Because it
avoids truncating the higher-order terms, it has better robustness to noise and
larger rotations than the linearized five-point solver. However, it introduces a
degeneracy when viewing a plane, because, in this case, the sixth correspondence
is linearly dependent on the first five, meaning that the system is rank-deficient.

5 Evaluation

In the following we evaluate our approach in detail concerning different aspects.
We demonstrate the accuracy of our methods for visual odometry on vehicle-
mounted camera image sequences, and show its performance in terms of run-
time.

We refer below to our novel algorithms using the following abbreviations:
Poly. 5pt. is the solution by reduction to a single polynomial (Section 4.1),
Lin. 5pt. is the truncated, linearized solution (Section 4.2), and Lin. 6pt. is
the linearized solution using six points (Section 4.3). We compare our methods
against the following existing methods: 5 pt. (Nistér) and 5 pt. (Stewénius)
refer to the essential matrix solvers of [22] and [25] respectively, 5 pt. (Kneip 2012)
is the direct rotation-only solution proposed by Kneip et al. [13], and 10 pt.
(Kneip 2013) is the iterative rotation-only method proposed by Kneip et
al. [12]. The iterative method does not require ten correspondences, but this
is the number recommended by Kneip et al. to avoid local minima. We use the
reference implementations of 5 pt. (Stewénius), 5 pt. (Kneip 2012), 10 pt.
(Kneip 2013) from the OpenGV library [11], and we use the hand-optimized
implementation of 5 pt. (Nistér) provided by Richard Hartley1.

1 http://users.cecs.anu.edu.au/ hartley/Software/5pt-6pt-Li-Hartley.zip
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Table 1. Average computation time for various solvers, in microseconds.

Method Time (µs)

Poly. 5pt. 7.43
Lin. 5pt. 3.51
Lin. 6pt. 10.71
5 pt. (Nistér) 6.32
5 pt. (Stewénius) 61.50
5 pt. (Kneip 2012) 475.09
10 pt. (Kneip 2013) 100.74

5.1 Solver Computation Time

The average computation time for each solver is given in Table 1. The times
were recorded using a Apple Macbook Pro Late 2011 with a 2.5 GHz i7 CPU.
Each algorithm was run 10,000 times using randomly generated input data.

The fastest existing method is 5 pt. (Nistér) which requires about 6 µs.
Our Poly. 5pt. solver is only slightly slower, requiring about 7.5 µs. We believe
the speed could be improved by using hand-optimization to build the constraint
matrix, as was done for the 5 pt. (Nistér) implementation.

Lin. 5pt., the truncated linearized five-point solver, is almost twice as fast
as 5 pt. (Nistér). However, this speed comes at the cost of lower accuracy with
greater rotation magnitudes, as will be seen in the following.

Lin. 6pt. is a bit slower than 5 pt. (Nistér), although again the speed
could be improved by hand-optimizing the code to build the constraint matrix.

5.2 Accuracy with Increasing Rotation

We evaluated our solvers with respect to increasing amounts of rotation. We ran
10,000 trials on synthetic data to assess the angular error, given translational
motion in either x, y or z direction and varying the overall rotation magnitude
between 0 and 10 degrees.

The results are shown in Figure 1. As expected, on average the Lin. 5pt.
gives a higher angular error for increasing amounts of rotation than the Lin. 6pt.
and the Poly. 5pt. solver, which give similar results. The median angular error is
significantly lower for all solvers. This suggests that the mean is affected by out-
liers within all the results acquired. There is no significant difference comparing
situations of translational motion along either the x, y or z axis. This indicates
that our solvers don’t exhibit any superior or inferior behavior for certain motion
patterns (i.e. forward or sideward motion).

5.3 Image Sequences from Vehicle-mounted Camera

We evaluated our approach on the KITTI visual odometry dataset [7]. It contains
11 sequences captured by a camera mounted on car driving around the streets of
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Fig. 1. Mean and median accuracy for translational motion in x (top), y (middle) and z
(bottom) direction, respectively, for increasing magnitudes of rotation about a random
axis.
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Karlsruhe, Germany. Ground truth trajectories were obtained using a combined
GPS/IMU inertial navigation system. Stereo sequences are available, but we
used the images from only one camera.

For each test sequence, feature tracks are obtained using the method of Geiger
et al. [8]. To estimate the relative pose between successive frames, we used each
solver in a Preemptive RANSAC [21] loop for robust estimation. In Preemptive
RANSAC, a fixed number of hypotheses N is sampled, and then all correspon-
dences are evaluated in blocks of size B. After each block is processed, the num-
ber of hypotheses is reduced by keeping only the best ones; this is repeated until
all correspondences have been tested. This method is typically used in visual
odometry applications, because it guarantees a fixed computation time for the
robust estimation step and is thus ideal for embedded implementation [6]. For
all methods we used N = 200 hypotheses and a block size of B = 10. Because
the translation magnitude cannot be recovered directly from monocular motion,
we scaled each resulting translation estimate to match the ground truth trans-
lation magnitude. This allows us to fairly compare all methods without having
to choose between various visual odometry or SLAM multi-frame integration
approaches.

In Figure 2, we plot the accuracy of the estimates against the time it takes
to compute them, averaged over all the frames of the sequences from the KITTI
dataset. We use the rotational error in degrees as our accuracy measure.

We considered the mean evaluation times both for single solver estimates and
for the complete Preemptive RANSAC loop. Lin. 5pt. is the fastest method,
but the accuracy averaged over all frames is slightly worse than 5 pt. (Nistér).
The Poly. 5pt. and Lin. 6pt. methods are slightly slower than 5 pt. (Nistér),
but have better average accuracy. These solutions all have an average RANSAC
loop time of under ten milliseconds. While 5 pt. (Stewénius) and 10 pt.
(Kneip 2013) have the best accuracy, their computational time is much higher.
Finally, 5 pt. (Kneip 2012) has worse average accuracy than our Poly. 5pt.
solution and is also much slower.

5.4 Accuracy and Increasing Amounts of Rotation

We also assess the accuracy of the individual solutions with respect to increasing
amounts of rotation as observed in the KITTI sequences. The results are shown
in Figure 3.

All methods show a trend towards higher error with greater rotation magni-
tudes. This is likely due to the increasing inaccuracy of feature matching with
greater intra-image motion. Our Poly. 5pt. and Lin. 6pt. solvers exhibit al-
most the same accuracy as the state-of-the-art methods across the range of
rotations. Lin. 5pt. has the worst accuracy with increasing rotation, because of
the truncated terms, and is only on par with the other solvers up to one degree
of rotation. 10 pt. (Kneip 2013) and 5 pt. (Kneip 2012) also show slightly
higher for the largest rotation range (four to five degrees).

Few sequential image pairs have rotation above five degrees in the sequences,
indicating that this about the maximum expected for a car-mounted camera
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Fig. 2. Average rotational accuracy versus computation time, evaluated using the se-
quences from the KITTI dataset. Top: for a single evaluation and Bottom: for Preemp-
tive RANSAC. Our Lin. 5pt. solver is faster than previous methods. Our Poly. 5pt.
and Lin. 6pt. solvers are slightly slower than 5 pt. (Nistér), but more accurate.
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Fig. 3. Mean (top) and median (bottom) rotational accuracy for the KITTI sequences,
aggregated by rotation magnitude. The error increases with the amount of rotation for
all the solvers. Our Lin. 5pt. algorithm is more sensitive than the other ones, however
after the final optimization step, it provides an accuracy similar to the other solvers
up to four degrees, which seems enough in practice as shown in Figures 4 and 5.

driving at city-street speeds. Furthermore, the camera was operated at 10 Hz,
and with a faster camera rate, the maximum rotation observed would be even
lower. This indicates that our solvers for approximated rotation are a reasonable
choice for such an application.

The complete trajectories as estimated by each method on several sequences
from KITTI are depicted in Figures 4 and 5. No non-linear optimization, bun-
dle adjustment, or loop closure was applied to the trajectories; the trajecto-
ries were simply produced by integrating frame-to-frame motion estimates. Our
Poly. 5pt. and Lin. 6pt. solvers give comparable results to the state-of-the-art.
The Lin. 5pt. solver shows more severe errors accumulating over time. These
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Fig. 4. Estimated trajectories for KITTI sequences with several solvers. Our solutions
provide results similar to the existing solvers, while being as fast or faster to compute.
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Fig. 5. Estimated trajectories for KITTI sequences with several solvers (cont.). Our
solutions provide results similar to the existing solvers, while being as fast or faster to
compute.

come from the inaccurate estimates at image pairs observing larger rotations,
while the majority of image pairs have correctly estimated relative pose.

6 Conclusions

In this work we presented several novel solutions to the five-point relative pose
problem. By applying an approximated rotation representation, we produce a
system of equations involving only the rotation terms that can be solved by
finding the roots of a single univariate polynomial. We also explored two alternate
solution procedures involving truncation of higher-order terms and linearization.
Our methods are as fast or faster than the state-of-the-art, while exhibiting
similar accuracy for small rotation magnitudes.

Evaluation on image sequences a from vehicle-mounted camera show that
our solvers are very competitive and suitable for such an application. Although
the solvers are, to varying degrees, limited in the amount of rotation they can
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handle, they are also generally as fast or faster than the state-of-the-art. This
implies that they would permit a higher frame-rate camera to be used, since
the processing time per-frame is reduced. This in turn reduces the amount of
rotation which is expected to be observed, and so makes the approach viable.
Manual optimization of the solvers would improve their speed even further. Also,
the simplicity of the solution procedures is such that we believe they could be
easily implemented on embedded hardware.

The approaches used in this work – approximating the rotation matrix, dis-
carding polynomial terms of higher order, and resolution by linearization – are
most certainly not limited to the relative pose problem. The success of this ap-
proach encourages us to consider other minimal problems found in the literature
in the future, for which we could possibly create considerably improved solvers.
Examples where this approach might also be applicable are the eight-point radial
distortion problem, the six-point calibrated radial distortion problem or, more
prominently, the four-point absolute pose problem with unknown focal length.
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