
Incremental Structural Modeling Based on Geometric and Statistical Analyses

Rafael Roberto1, João Paulo Lima1,2, Hideaki Uchiyama3, Clemens Arth4,
Veronica Teichrieb1, Rin-ichiro Taniguchi3, Dieter Schmalstieg4

1Voxar Labs, Centro de Informática, Universidade Federal de Pernambuco, Brazil
2Departamento de Informática e Estatı́stica, Universidade Federal Rural de Pernambuco, Brazil

3Laboratory for Image and Media Understanding, Kyushu University, Japan
4Institute of Computer Graphics and Vision, Technische Universität Graz, Austria
rar3@cin.ufpe.br, jpsml@cin.ufpe.br, uchiyama@limu.ait.kyushu-u.ac.jp,

arth@icg.tugraz.at, vt@cin.ufpe.br, rin@kyudai.jp, dieter@icg.tugraz.at

Abstract

Finding high-level semantic information from a point
cloud is a challenging task, and it can be used in various
applications. For instance, it is useful to compactly
represent the scene structure and efficiently understand
the scene context. This task is even more challenging
when using a hand-held monocular visual SLAM system
that outputs a noisy sparse point cloud. In order to
tackle this issue, we propose an incremental primitive
modeling method using both geometric and statistical
analyses for such point cloud. The main idea is to
select only reliably-modeled shapes by analyzing the
geometric relationship between the point cloud and the
estimated shapes. Besides that, a statistical evaluation is
incorporated to filter wrongly-detected primitives in a noisy
point cloud. As a result of this processing, our approach
largely improved precision when compared with state of
the art methods. We also show the impact of segmenting
and representing a scene using primitives instead of a point
cloud.

1. Introduction
Automatic reconstruction of 3D object shapes is useful

for several application, such as blueprint generation for
architecture. Since it is a difficult task to accomplish,
it has been a relevant research topic for years. Several
methods have been proposed to achieve it by using laser
scanners [21] and cameras [9]. Due to low-cost RGB-D
sensors, such as Microsoft Kinect and Google Tango, 3D
data acquisition became more common, and runs in real
time even on mobile devices. Such sensors acquire the
depth of an object on a pixel-by-pixel basis and, then,

describe the obtained shapes as a point cloud. Although
they are very useful for 3D measurement and visualization,
there are some aspects to be improved. For instance, usually
the scene is represented using a point cloud or a mesh
computed from it. The latter simply consists of connected
points with little information about the semantic structure.
Also, both the point cloud and the mesh are frequently
over-represented because a dense point cloud would be
redundant to represent a 3D structure.

Inferring object semantics such as structural or object
type information from a point cloud is an important
research issue. This process is specifically referred to as
semantic modeling, and it is useful in several applications
for scene understanding and reverse engineering. The
shape parameters of geometric primitives such as scale and
pose are valuable knowledge to be estimated especially in
human-made environments. Such semantics are useful for
controlling picking robots [10], and they can also replace
redundant point clouds with data structures, leading to
savings in memory.

Most of the existing methods on semantic modeling
estimate geometric primitives in a dense point cloud, which
is commonly acquired using laser scanners offline [1].
Since the acquired point cloud contains more information
available to rely on and it is relatively noiseless, a most
points can stably fit primitive shapes. However, it is more
challenging to extract primitive shapes in a noisy and sparse
point cloud of a partially-observed object computed from
image-based approaches with mobile devices. Some studies
have tackled this issue by limiting specific situations, such
as detecting only one shape class [11, 15]

These methods still require further generality and
improvements of precision and accuracy for various
applications. In particular, one uses these primitives as

constraints for visual SLAM systems [16], in which the
error of incorrect primitive estimates can propagate and
increase during tracking. In our preliminary experiments,
a single mis-estimated shape had a negative influence on
the whole tracking process.

In this paper, we propose a high-precision semantic
modeling approach that leverages geometric and statistical
analyses for a noisy and sparse point cloud. We build it
on top of the general primitive estimation approach from
Efficient Random Sample Consensus (RANSAC) [18] and
the improvements from Incremental Structural Modeling
(ISM) [17]. In summary, our method uses some useful
information based on the geometry of estimated shape
to compute a weight that indicates the reliability of the
detected primitive. When this estimation is not reliable
enough, we perform a statistical evaluation using the
detection history and we eliminate those shapes with
random detection. The main contributions of this paper are
summarized as follows:

• A new approach considering the randomness and
geometry of the estimated shape for ISM (Section 3);

• Evaluations of the proposed method in comparison
with existing ones, showing that it improves semantic
modeling precision (Section 4).

2. Related Work
Several methods have been proposed in the literature to

detect shapes in point clouds. One conventional approach is
to use reverse engineering techniques to estimate geometric
primitives, such as region growing [3]. It can efficiently
deal with large amounts of data because it makes simple
comparisons using the normals to determine if a set of
points belongs to the same group. However, this approach
is not robust to noisy point clouds because it can lead to
a wrong classification. The robustness has been improved
using both Hough Transform [2] and RANSAC [8]. The
advantage of RANSAC based techniques is that they can
work even for a sparse point cloud because they only need
a minimal set of points to estimate a primitive. Another
approach is based on machine learning techniques, which
combine local features and AdaBoost to detect complex
objects [13]. Support Vector Machine (SVM), Fast Point
Feature Histogram (FPFH) descriptors and RANSAC are
also used to extract semantics from a point cloud [4].

Most of these semantic modeling methods were designed
to use dense point clouds as input data. One example
is [5], which uses a reverse engineering approach to
estimate the floor plan of houses from a dense 3D point
cloud generated using the Kinect sensor. Some methods
detect only specific primitives, such as planes [11, 12] or
cylinders [7, 15]. While other methods deal with different
classes of shapes at once. For instance, GlobFit [6] can

estimate planes, cylinders, cones and spheres. Some even
detect pre-modeled complex shapes along with planes and
cylinders in industrial scenarios [14].

Primitives can also be detected in scenes with a sparse
point cloud. However, most methods were designed
to detect planes only. One example is [20], which
estimated planes based on its reconstruction to create
textured models. The Incremental Structural Modeling
(ISM) method estimated multiple types of primitives in a
point cloud acquired using a visual SLAM system [17].
This solution is based on the Efficient RANSAC approach
from [18] as a shape detector and uses the incremental
construction of the SLAM map to detect primitives and
refine the detection result. Although this method achieves
good results for different types of primitives, it still needs to
improve precision in challenging scenarios.

3. Geometric and Statistical Incremental
Semantic Modeling

Similar to ISM [17], our method uses the generating
process available in visual SLAM systems to evaluate
the primitives estimated using Efficient RANSAC [18]
incrementally. Figure 1 illustrates the flow of our method.
The main difference with ISM is to perform two additional
analyses to improve precision. First, we propose to use the
geometric information of the detected primitive to measure
its similarity to the input point cloud. This information is
later used to assess the shape correctness. After that, we
perform a statistical analysis through the detection history
to identify and eliminate random primitives.

Figure 1. Flow of our Geometrical and Statistical Incremental
Semantic Modeling (GS-ISM) approach.

When a visual SLAM system reaches a keyframe, it
updates the map, which adds new points to the map. In our
method, we use Efficient RANSAC to detect the shapes
every time we have a new map. However, some of the
detected shapes may be wrong and are not reliable due to
a noisy input data or the small number of points in the

map. The remaining steps of our Geometric and Statistical
Incremental Semantic Modeling, namely GS-ISM, are,
thus, enforced to identify which of these detected shapes are
reliable. We detail this process in the following subsections.

3.1. Shape Fusion

In keypoint based visual SLAM systems, most of the
characteristics appear at highly textured areas. Thus,
Efficient RANSAC may detect one primitive as multiple
ones because these textured areas may be distant from
each other. Therefore, it is important to combine all the
shapes belonging to an object into one to improve their
representativeness and reliability [17].

As in ISM, we use the similarity of the shape parameters
to decide whether to fuse two shapes or not. To combine
planes, it is necessary that their normals point to the same
direction and the distance between them is smaller than a
threshold based on the point cloud size. For spheres, the
decision is based on the distance between their centers and
the difference between their radii, which also should be
smaller than a certain threshold. Finally, cylinders are fused
if their axis point to the same direction and the distance
between them, as well as the difference between their radii,
are smaller than a value.

Additionally, we consider the proximity between the
primitives to restrict or widen the similarity thresholds. The
principle is that two distant shapes have a smaller possibility
to be the same than closer ones. Experimentally, we widen
the thresholds by 25% when evaluating the fusion primitives
that have an intersection. Otherwise, we restrict them by
25%. This means that distant shapes have to be more alike
to be merged. On the other hand, closer primitives are more
likely to be the same and the threshold can be less restricted.

3.1.1 Parameter Computation

Similar shapes according to the aforementioned criteria
are fused. We set the parameters of the resulting fused
shape as a weighted average between the parameters of
both primitives. This is more reliable than when using
the parameters of the shape with more number of points,
as in ISM. The weight is based on the geometric analysis
of the points in the detected shape. The main idea is to
use the average Euclidean distance of each input point that
was used to estimate the primitive to the resulting shape.
Even for noisy data, this distance will be smaller on correct
estimations than on wrong ones. For instance, considering a
globe being tracked that was correctly modeled as a sphere
or incorrectly detected as a plane. The average distance of
the 3D points in the globe to their projection in the sphere
will be smaller when compared to the distance of the same
input points to their projection in the wrong plane. Figure 2
illustrates this idea.

Figure 2. Difference between the input points to their
correspondent projected points on a shape estimated correctly
(left) and incorrectly (right).

Thus, the parameters Pf of the fused shape will be:

Pf =

n∑
i=1

wiPi, (1)

where n is the number of similar shapes to be fused and Pi

are their parameters. The weight wi is:

wi =
np∑np
j=1 dj

, (2)

where dj is the Euclidean distance between the input points
to its projection in the estimated shape and np is the number
of points in the estimated primitive. The weights are
normalized and

∑n
i=1 wi = 1.

Using Equation 1, every fused shape will influence the
resulting primitive. However, it will be closer to the one
with the smaller error. This average can be applied to every
parameter except the plane and the cylinder position. For
the plane position, it is only valid if they are all projections
on the other planes. Thus, we project the position of one
point p1 in the others, which in the case illustrated in the
top row of Figure 3 will be p′1. Then, we compute the
weighted average between p1 and p′1 instead of p2. This
will also work in case of parallel planes. As for the cylinder
position, this parameter will be the axis intersection. In case
of concurrent or parallel axes, we fuse the cylinders in pairs
if there is more than one. First, we get the points on each
axis that is closer to the other and the resulting position will
be their weight average.

3.1.2 Inclusion Criteria

In case a shape is not fused with any other, we make
an initial reliability evaluation to decide if we keep this
detected primitive or not. ISM eliminated shapes with
a small number of points. We, on the other hand, use
four geometric characteristics of the primitive to make this
assessment, as described below:

• Number of Points: shapes with more points are
usually more reliable because the estimation is based

Figure 3. Fusion of parameters for different classes of shapes.

on a large amount of data. Good primitives are larger
than 2% of the whole point cloud;

• Dispersion: it measures how spread are the points in
the primitive. Since the keypoints are clustered around
highly textured areas, small regions tend to concentrate
most of the shape points. The dispersion of reliable
shapes is smaller than 20% of this value for the whole
point cloud;

• Distance: it is the same Euclidean distance mentioned
previously. Reliable shapes have an average distance
smaller than 5% of the largest size of the entire point
cloud bounding box;

• Radius: the sphere and cylinder radius can also
provide a hint regarding the shape’s reliability. A noisy
plane can be estimated as one of these two primitives
with a considerable radius. Therefore, good sphere and
cylinders have radius smaller than the largest size of
the entire point cloud bounding box. It should be noted
that this criterion is not applied to planes.

We only keep shapes that pass in all of these criteria.
These values were determined experimentally and they are
based on the dimension of the input point cloud because it
puts all thresholds in proportional to the scene scale.

3.2. Shape Matching

As in ISM, we use the intersection of the 3D bounding
box and the distance between the center of mass to

match the detected shapes with those previously found.
In summary, we compute a sc score for each class of
primitive that a given shape on current detection intersects
on the previous estimation. This score is proportional to
the intersection volume and inversely proportional to the
distance between the center of mass:

sc =

∑nsc
i |ψi|pi∑nsc
i |ψi|di

|ψs|∑nsc
i |ψi|

, (3)

where nsc are the indexes of the shapes of the given class
with intersection on previous keyframes, |ψi| is the number
of points of that shape, pi and di are the intersection ratio
and distance between centers of mass, respectively, and
|ψs| is the number of points in the primitive on the current
keyframe. We select the one with the maximum score as
correspondence.

3.3. Shape Update and Recovery

The shape detected on current frame inherits the history
data of the one it matched on previous detections. These
data contain the primitive class that was detected on every
keyframe, as well as the average distance to the original
point cloud at that detection. With that information, we can
verify if the current estimation is following the historical
data.

We check the class that this primitive was detected as
over time. If the current shape has the same type of the one
that appears in more than half of them, including the current
detection, its parameter is updated. This new parameter
will be the weighted average of each detection over time.
With this update, every previous detection will influence the
final shape, which results in primitives that are more stable
through time than using just the parameters from the last
one, as in ISM.

We use a similar process as explained in Section 3.1 to
update the new parameter Pu:

Pu =
n−1∑
i=1

wiPu−1 + wnPf , (4)

where n is the number of shapes in the past, including
current detection and wi are their respective weights,
which are normalized. Pu−1 and Pf are, respectively, the
parameters in previous detections and the current parameter
after fusion.

On the other hand, if the current shape has a type that
is different from the one that appears most of the time, it is
changed to that class of primitive. As for the parameters, it
will be the same as the previous Pu from that type.

In this step, we also evaluate shapes that were not
detected on the current keyframe but appeared previously.
We recover these shapes with the same parameters from the
last appearance. Its history data will be updated using the

average distance of the recovered shape, but it will not have
a primitive class associated at this particular moment. This
shape will eventually disappear when not detected anymore
because there will be no class of primitive that appear in
more than 50% of the time.

3.4. Reliability Computation

At this point, we have all the detected shapes and
their correspondent history information since their first
appearance. In ISM, all primitives that appeared in more
than 50% of the time were considered reliable. GS-ISM, on
the other hand, compute the reliability based on a geometric
and statistical evaluation.

3.4.1 Geometric Analysis

For each class of primitive that appears in the history data,
we compute the weight wc:

wc =
1∑h

i=1 di
, (5)

where h is the number of times that each class of primitive
appears in the history data and di is the distance of the
points in that shape to the original point cloud.

The weights are normalized and the one with the
maximum value is the dominant class. We judge shapes
whose dominant primitives have a weight higher than 0.75
as reliable. On the other hand, we consider unreliable
those in which all weights are smaller than 0.5. When
the weight of the dominant shape is between these two
values, its classification will be determined by the statistical
analysis. If this evaluation shows that the detection class
through history is random, the primitive will be unreliable.
Otherwise, it will be set as reliable.

3.4.2 Statistical Analysis

We perform a runs test for randomness to determine if the
estimation history is random. Basically, this non-parametric
test uses the expected value and standard deviation to
estimate the minimum number of runs that a sample can
have to be considered random [19]. A run means a sequence
of consecutive estimates of one particular class of primitive.
In our case, we have three types of shapes. However, we
decided to look at our history of classification as binary data
because the convergence is faster. Therefore, we denote a +
for the first primitive detected. Then, we repeat the sign if
the shape class is the same as the previous one. Otherwise,
we invert it . For a 5% level of significance, the sample is
random if the number of runs is greater than:

N(R) = µ− 1.65σ, (6)

where the expected value µ and the standard deviation σ for
the total number of samples n are:

µ =
2n− 1

3
, (7)

σ =

√
16n− 29

90
. (8)

Table 1 shows the example of a history information with
a sequence of four spheres, followed by one cylinder, one
plane and then by two other spheres. There are R = 4 runs
and n = 8 samples. In this case, the minimum number
of runs for a random sample is N(R) = 3.269, which
indicates a random sample.

Table 1. History of the estimated shape from a primitive. For each
sample that represents a keyframe Ki, it was classified as plane (P),
sphere (S) or cylinder (C).

K1 K2 K3 K4 K5 K6 K7 K8

Primitive S S S S C P S S
Label + + + + − + − −

4. Evaluation
We implemented our approach in C++ using OpenCV1

and Efficient RANSAC2 as libraries. We compared GS-ISM
with Efficient RANSAC and ISM regarding precision,
recall and F0.5-Score. The choice of this metric instead of
F1-Score was because it highlights the precision, which is
the focus of our method. We used a dataset3 that has five
scenes targeting distinct types of primitives and different
numbers of keyframes, as seen in Table 2. Besides that, we
modified Efficient RANSAC to use the same initial seed for
random number generation. Therefore, it is not necessary
to run the system several times during evaluation because it
will always return the same result.

Table 2. Details of the dataset used for the evaluation, in which P,
S and C stands for Plane, Sphere and Cylinder, respectively.

Test Case Number
of Frames

Number of
Keyframes

Primitives
in Scene

Case 1 1,660 31 P, S, C
Case 2 1,346 24 C
Case 3 849 20 S, C
Case 4 405 7 P
Case 5 499 17 P

It is possible to see in Figure 4 that our method obtained
100% precision in all cases while ISM achieved it only
once. In turn, Efficient RANSAC never results in more

1Available at: http://opencv.org/
2Available at: https://goo.gl/XINs6N
3Available at: https://goo.gl/c6mtBF

Figure 4. Comparison of precision, recall (top) and F0.5-Score (bottom) between Efficient RANSAC [18], ISM [17] and our method.

than 82%. When comparing GS-ISM precision with ISM,
we noted that in every case that ISM estimated a shape
wrong, it happened in the initial keyframes. This is an
expected behavior since the point cloud has few points in
the initial reconstructions that the primitive detectors can
rely on. The geometric and statistical analyses were able
to identify these early incorrect detections. For instance, in
the first three keyframes of Case 2, the bottle in the right
side is assigned as a sphere, then as a cylinder and later as
a sphere again because of the small number of noisy points.
For the ISM, the bottle appears as a sphere in two-thirds
of the time. Therefore, in the third keyframe, this bottle is
incorrectly estimated as a sphere. In our case, the bottle is
assigned to the same primitives in the first three keyframes
but, each one has a weight based on the geometric analysis.
After normalization, the weights of detection history are:
0.186 (sphere in the first keyframe), 0.537 (cylinder in the
second keyframe) and 0.277 (sphere in the third keyframe).
Thus, for GS-ISM, the bottle will be assigned as a cylinder
because its weight is higher than the 0.463 of the sphere.

Regarding the recall, Figure 4 displays that our method
is worse than the other two approaches. GS-ISM
compromises recall in order to be entirely sure that the
most reliable shapes are selected. Using the same bottle
as an example, in the third keyframe the cylinder weight
is 0.537, which is below the reliability threshold of 0.75.
However, since it is above the 0.5 unreliability mark, we
perform a statistical analysis to verify the randomness of
this detection. According to Equation 6, this estimation
history is random and the shape is assigned as unreliable.

Concerns to F0.5-Score, we can see in Figure 4 that
our method presented a better result in three of the five
cases. The most significant improvement is in Case 4,
which is very challenging because the reconstruction is

very noisy. This evaluation indicates that the restriction
imposed improved the precision, but with the cost of
having few shapes detected. Therefore, it is possible to
adjust the parameters to have more primitives and decrease
the precision. These changes will depend on the target
application. Table 3 provides some examples of possible
modifications to make and the outcome for Case 1.

Table 3. The influence of modifications in GS-ISM on the final
precision and recall in Case 1.

Condition Changed Precision Recall
Remove geometrical analysis -1.409% +1.846%

Remove statistical analysis -1.409% +3.139%
Double elimination thresholds -0.704% +2.602%

The first and third rows of Figure 5 present one keyframe
from each test case and the estimated shapes using our
method. They are represented by the projection of the input
points used to compute the primitive. The second and fourth
rows display one view of the input point cloud in red and
some of the estimated shapes in blue. From the last row, it
is possible to see how challenging is Case 4. Although the
books are aligned in real life, the points from the left one
are not aligned with the other two.

4.1. Runtime Evaluation

Concerning the computational cost, Efficient RANSAC
takes on average 25.335 ± 9.597 ms to estimate the
primitives in a computer with a Core i7-6820 (2.70 GHz)
and 16GB of RAM. The other steps combined run in 13.528
± 5.496 ms on average. ISM is 7.78% faster to perform
the same steps. The bottleneck is the shape fusion step,
which takes 12.699 ± 5.474 ms of that time. It is worth
mentioning that the execution time is related to the number
of input points. Therefore, the measurements, which are the

Figure 5. The first and third rows show the result of GS-ISM on each test case. Blue labels represent planes, green ones are for spheres
and red for cylinders. The second and fourth rows show one particular view of the input point cloud (in red) and some of the estimated
primitives (in blue).

averages of all five test cases, were normalized to a group
of thousand points.

4.2. Segmentation Evaluation

We also evaluate how our approach segments the point
cloud, which is a natural outcome of semantic modeling.
Several objects have the form of the basic primitives we
estimate with GS-ISM. Looking at an average from all
five test cases, 70.85% of the points can be assigned to a
plane, sphere or cylinder. Even though we are dealing with
scenes designed with this type of primitives, the number
is similar to a study that claims that 78% of all elements
in an industrial scenario can be modeled using these three
shapes [4]. Moreover, the chart on Figure 6 shows that
only 6.30% of the remaining points were not labeled as any
primitive. The other 22.85% points come from primitives
that were discarded because they were unreliable.

4.3. Point Cloud Representation Evaluation

Finally, we compared the scene representation using
the point cloud and the modeled primitives. The scene
is usually overrepresented when it is described using

Figure 6. Percentage of points that were labeled to each primitive.

the points because there are many redundant points.
We measure the memory necessary to represent the
reconstruction of each test case using the point cloud and
we compared it with the description of the same map using
the data structure of the primitives modeled with GS-ISM.
Figure 7 shows this difference in KB between then, ordered

by the number of points from the reconstructed map. The
most significant difference is in the last keyframe of Case 1,
which has 16,302 points. Using the point cloud requires
8.69 times more memory than describing the same map
using the six detected primitives plus the 3,915 unreliable
and unassigned points.

Figure 7. Memory (in KB) required to describe a scene using the
point cloud and the data structure of the detected primitives.

Moreover, describing a scene using points commonly
results in over and underrepresentation at the same time.
For instance, if we consider only the cylinder detected in the
last keyframe of Case 1, we can notice that there are more
points than necessary to describe the textured front side but
none to represent the back side. Thus, it is possible to
use much less information to define this shape while filling
the missing parts. Using this cylinder as an example, it is
necessary 24 times more memory to describe it using the
points than using the data structure of the detected primitive.

4.4. Proof of Concept

We intended to see how GS-ISM responds to an
application that benefits from having semantic knowledge
of the environment. We developed Shape Hunt, a system
to help children to identify some of the primitives they are
learning in school. The idea of this proof of concept is that
it draws a shape and he/she has to find real objects with the
same geometric form. Since we have the scene map, we can
identify all selected shapes and the child always have to find
a new one. Figure 8 shows this proof of concept.

We used the images from the dataset as input for this
application. The scenes are limited to a small workspace,
which was sufficient for this test. The application behaves
as expected. Each primitive was detected only once and
none was misclassified.

5. Conclusions
We presented a method that performs geometrical and

statistical analyses to improve the incremental estimation
of shapes in sparse point clouds. Our approach uses the
geometric characteristic of the primitives to assess their
reliability. This information is related to the distance

Figure 8. The application indicates the shape the user have to find
(left image). When the correspondent shape is centered (top-right),
it gives a positive feedback (bottom-right) and moves to the next
primitive.

between the input points used to estimate the shapes
and their projection on the primitive. Depending on the
geometric analysis, we also run a randomness test to keep
the most reliable primitives.

The experiment indicates that our method improved
precision in all test cases, which outperforms existing
methods in this criteria. Our method focuses on precision
and for that, we are compromising recall to assure we have
the correct shapes. However, we can modify the parameters
to increase recall when necessary. The evaluation also
suggests that our method can segment more than 70% of
the point cloud from the test cases, which is compatible with
the literature. Finally, we showed that representing a shape
using primitives requires almost nine times less memory to
describe the scene than using the point cloud.

As future works, we plan to integrate our system with a
SLAM system such that we can evaluate it in more complex
scenes. Besides that, we aim to port this semantic modeling
method to mobile devices in order to measure the impact of
using primitives on memory consumption and processing
time. We also intend to use semantic knowledge of the
scene to improve the tracking results of the visual SLAM
system. The hypothesis is that by replacing the points
in the original map by their projection on the estimated
shapes we would denoise the point cloud, which can reduce
errors. This can lead to a faster convergence of the bundle
adjustment algorithm that can be very useful for mobile
devices. In this case, precision is crucial because one wrong
estimate can cause an error that would propagate to the
entire tracking process.

Acknowledgments

The authors would like to thank CNPq (process
140898/2014-0 and 456800/2014-0), CAPES (process
88881.134246/2016-01) and the Austrian FFG under the
Matahari project nr. 859208 for partially funding this
research.

References
[1] J. Chen and B. Chen. Architectural modeling from sparsely

scanned range data. Int. J. Comput. Vision, 78(2-3):223–236,
July 2008.

[2] B. Drost and S. Ilic. Local hough transform for 3d primitive
detection. In 2015 International Conference on 3D Vision,
pages 398–406, Oct 2015.

[3] D. Holz, S. Holzer, R. B. Rusu, and S. Behnke.
Real-Time Plane Segmentation Using RGB-D Cameras,
pages 306–317. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012.

[4] J. Huang and S. You. Detecting objects in scene point
cloud: A combinational approach. In 2013 International
Conference on 3D Vision - 3DV 2013, pages 175–182, June
2013.

[5] Y. M. Kim, J. Dolson, M. Sokolsky, V. Koltun, and S. Thrun.
Interactive acquisition of residential floor plans. In 2012
IEEE International Conference on Robotics and Automation,
pages 3055–3062, May 2012.

[6] Y. Li, X. Wu, Y. Chrysathou, A. Sharf, D. Cohen-Or,
and N. J. Mitra. Globfit: Consistently fitting primitives
by discovering global relations. ACM Trans. Graph.,
30(4):52:1–52:12, July 2011.

[7] Y. J. Liu, J. B. Zhang, J. C. Hou, J. C. Ren, and W. Q. Tang.
Cylinder detection in large-scale point cloud of pipeline
plant. IEEE Transactions on Visualization and Computer
Graphics, 19(10):1700–1707, Oct 2013.

[8] D. Lopez-Escogido and L. G. de la Fraga. Automatic
extraction of geometric models from 3d point cloud
datasets. In 2014 11th International Conference on
Electrical Engineering, Computing Science and Automatic
Control (CCE), pages 1–5, Sept 2014.

[9] Y. Ma, S. Soatto, J. Kosecka, and S. Sastry. An
Invitation to 3-D Vision: From Images to Geometric Models.
Interdisciplinary Applied Mathematics. Springer New York,
2005.

[10] A. T. Miller, S. Knoop, H. I. Christensen, and P. K.
Allen. Automatic grasp planning using shape primitives.
In Robotics and Automation, 2003. Proceedings. ICRA’03.
IEEE International Conference on, volume 2, pages
1824–1829. IEEE, 2003.

[11] T. Nguyen, G. Reitmayr, and D. Schmalstieg. Structural
modeling from depth images. IEEE Transactions on
Visualization and Computer Graphics, 21(11):1230–1240,
Nov 2015.

[12] B. Oehler, J. Stueckler, J. Welle, D. Schulz, and S. Behnke.
Efficient Multi-resolution Plane Segmentation of 3D Point
Clouds, pages 145–156. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2011.

[13] G. Pang and U. Neumann. Training-based object recognition
in cluttered 3d point clouds. In 2013 International
Conference on 3D Vision - 3DV 2013, pages 87–94, June
2013.

[14] G. Pang, R. Qiu, J. Huang, S. You, and U. Neumann.
Automatic 3d industrial point cloud modeling and
recognition. In 2015 14th IAPR International Conference
on Machine Vision Applications (MVA), pages 22–25, May
2015.

[15] R. Qiu, Q.-Y. Zhou, and U. Neumann. Pipe-Run Extraction
and Reconstruction from Point Clouds, pages 17–30.
Springer International Publishing, Cham, 2014.

[16] D. Ramadasan, T. Chateau, and M. Chevaldonn. Dcslam:
A dynamically constrained real-time slam. In 2015 IEEE
International Conference on Image Processing (ICIP), pages
1130–1134, Sept 2015.

[17] R. A. Roberto, H. Uchiyama, J. P. S. M. Lima, H. Nagahara,
R.-i. Taniguchi, and V. Teichrieb. Incremental structural
modeling on sparse visual slam. IPSJ Transactions on
Computer Vision and Applications, 9(1):5, Mar 2017.

[18] R. Schnabel, R. Wahl, and R. Klein. Efficient RANSAC
for point-cloud shape detection. Computer Graphics Forum,
26(2):214–226, 2007.

[19] D. Sheskin. Handbook of Parametric and Nonparametric
Statistical Procedures, Fifth Edition. Taylor & Francis, 2011.

[20] S. N. Sinha, D. Steedly, R. Szeliski, M. Agrawala,
and M. Pollefeys. Interactive 3D architectural modeling
from unordered photo collections. ACM Trans. Graph.,
27(5):159:1–159:10, Dec. 2008.

[21] L. Zhu, J. Hyypp, A. Kukko, H. Kaartinen, and R. Chen.
Photorealistic building reconstruction from mobile laser
scanning data. Remote Sensing, 3(7):1406–1426, 2011.

