
TRICam - An Embedded Platform for Remote Traffic Surveillance

Clemens Arth, Horst Bischof
Graz University of Technology

Institute for Computer Graphics and Vision
Inffeldgasse 16/2, 8010 Graz, Austria
{arth,bischof }@icg.tu-graz.ac.at

Christian Leistner
FREQUENTIS GmbH

Technology Center GRAZ
Plueddemanngasse 104/1, 8042 Graz , Austria

christian.leistner@frequentis.com

Abstract

In this paper we present a novel embedded platform,
dedicated especially to the surveillance of remote locations
under harsh environmental conditions, featuring various
video and audio compression algorithms as well as support
for local systems and devices. The presented solution fol-
lows a radically decentralized approach and is able to act
as an autonomous video server. Using up to three Texas
InstrumentsTM TMS320C6414 DSPs, it is possible to use
high-level computer vision algorithms in real-time in order
to extract the information from the video stream which is
relevant to the surveillance task.

The focus of this paper is on the task of vehicle detection
and tracking in images. In particular, we discuss the issues
specific for embedded systems, and we describe how they in-
fluenced our work. We give a detailed description of several
algorithms and justify their use in our implementation. The
power of our approach is shown on two real-world appli-
cations, namely vehicle detection on highways and license
plate detection on urban traffic videos.

1. Introduction

In recent years the state of the art in traffic surveillance
has changed dramatically. Many systems have changed
from analogue closed circuit television (CCTV) cameras to
fully digital systems. While this delivers higher flexibility
and quality, as well as decreases the high communication
costs for analogue systems, the growing amount of video
data becomes more and more unmanageable for a single hu-
man operator.

Several arguments stand for the implementation of a to-
tally decentralized, flexible embedded vision platform:

• Analogue-digital conversion and video compression
should take place directly on the camera spot, to re-
duce communication overhead and to make wide-area
surveillance monitoring feasible. Image processing al-

Figure 1. Prototype of the embedded DSP vision platform.

gorithms can be used to take over particular tasks of a
human operator, or to alert the operator.

• Facing threads of terrorism, there is a growing indus-
try demand for embedded vision systems, which can
meet the demands on fault tolerance and proper perfor-
mance, even under adverse environmental conditions.

• Improvements of low-power high-performance DSPs
for video processing in recent years made the applica-
tion of even high-sophisticated computer vision algo-
rithms on embedded platforms possible; thus, embed-
ded platforms are representing an alternative solution
to conventional industrial PCs nowadays.

In this respect, our system has the following features: it
is able to act as a stand alone video server, reduces the over-
all communication overhead, and has the objective to be
applied in outdoor traffic scenes under harsh environmen-
tal conditions where standard industrial PCs are no longer
applicable. As it is characteristic of embedded platforms,
this robustness comes at the cost of very limited amount
of memory and computational resources available for soft-
ware applications. Moreover, floating point operations are
very costly, which complicates algorithm design and makes
additional usage of coding schemes necessary (for example
floating point to fixed point conversions).

The goal of this paper is to implement a generic object
detection and tracking system, which is able to perform in



Figure 2. Block diagram of the hardware architecture.

real-time despite of these charges and restrictions. In the
following section2, we give a short overview about related
work. A detailed description of our hardware platform is
given in section3. A description of the various software
modules used in our system follows in section4. In the
experimental section5, we show how the single modules
are assembled in two real-world applications. The paper
concludes in section6, summarizing the main contributions
of this work and giving an outlook on future work.

2. Related Work

Due to the lack of performance and memory ressources,
visual object detection on embedded devices has not been
used widely. Especially higher-level vision tasks are not
treated in the embedded vision literature. Many work con-
centrates on special FPGA based architectures, their suit-
ability for embedded vision systems and simple vision
tasks, for example in the works of Senet al. [17] and
MacLean [11]. Yet, Mathewet al. presented a custom co-
processor which they call theperception processorto be
used in mobile systems [12]. They compare several algo-
rithms and show that their VLIW approach has significant
advantages concerning performance and power to FPGAs,
ASICs and CPU logic functions.

An embedded pedestrian detection system based on a
clustered training set is presented by Shashuaet al. [19].
Furthermore, they achieved a performance improvement
from 10Hz to 25Hz frame rate by porting their algorithm

from a standard 1GHz personal computer to a system-on-a-
chip called ”EyeQ”.

An embedded vision system based on a CMOS imaging
chip and a RISC processor able to perform real-time car
counting is presented in the work of Chiuet al. [5]. The
entire system consists of a network of 13 embedded vision
systems and is applied to a parking facility.

Roweet al. presented a low-cost embedded color vision
system implemented in small mobile robots where tradi-
tional vision systems would not be practical [14]. They
implemented basic color blob tracking and other low-level
image processing tasks on a low-cost micro controller com-
bined with a CMOS camera module and achieved 50 frames
per second with a resolution of 352 x 288 pixels.

3. Hardware Architecture

The embedded DSP platform used in this paper can
be qualified as being a small completely integrated video
server, based on Texas InstrumentsTM TMS320C6414 digi-
tal signal processor. The main features are:

• 1 TMS320C6414 DSP with 600 MHz and 1MB cache

• 128 MBit SDRAM for video compression, processing
and storage of temporary data

• 4 MBit Flash Memory for firmware storage

• a 5-port ethernet switch with three 10/100 BaseTX
ports and one 100 BaseFx fibre port



• 1 video input processor, featuring 4 analogue CVBS or
2 SVHS TDM video channels per system (PAL/NTSC)

• 1 FPGA for buffering video frames/scanlines between
the video input processor and the DSP

• a full-duplex PCM audio interface using 8 kHz for
voice communication and sound processing

• 2 RS232 serial ports

• a T-module expansion connector for two additional
DSPs

The overall platform design is depicted in the block diagram
in Figure2.

The use of an analogue video interface allows for fast
integration of the video server into an already existing net-
work of pre-assembled cameras. However, this does not
narrow the applicability of the platform in the domain of
digital cameras, since the integrated ethernet interface can
also be used to connect the platform to digital cameras shar-
ing an ethernet port1. Furthermore, the audio interface can
be used to augment the visual perception of any camera by
audio information.

The computational resources of the platform may be
scaled using the expansion module and additional DSPs, al-
lowing for the application of more demanding algorithms
from the field of computer vision. Any information, either
generated or extracted, can be transmitted to a given des-
tination in various ways, like sharing a conventional com-
puter network or any other technology (modems or mobile
phones may be interfaced using the integrated serial ports).
Thereby, the amount of information to be transmitted may
directly depend on the infrastructural resources available at
site, thus, ranging from a few bytes for a simple text mes-
sage to a fully encoded MPEG4 video stream [23] at 1.5
MBit/s.

In summary, the platform can be used in a lot of dif-
ferent ways, for example, as a simple compression device
producing high-quality video for general surveillance tasks,
or as a complete video telephone box using Voice over IP
(VoIP). As a proof of concept, the applicability of our em-
bedded platform as a smart vision device, utilizing various
high-level computer vision algorithms, will be described in
the following section.

4. Software Architecture

Due to the modular software design and architecture, the
software packages can be composed of several single mod-
ules, depending on the task to be accomplished. We will de-
scribe these modules in the following and demonstrate how

1We are looking forward to integrate a USB 2.0 or Firewire interface in
a further revision of the hardware platform.

they can be assembled to fulfill their task in a real-world
application. Furthermore, we justify their application and
note special implementation issues.

4.1. Image Plane to Ground Plane Mapping

Because we are dealing with a stationary camera setup, it
makes sense to bring in information about the scene geom-
etry. This knowledge is used for narrowing the search space
of our high-level object detector (section4.2.2), and is used
for estimating the average speed of the detected objects.

There are many possible algorithms known for camera
calibration, also ones especially adapted to our problem of
stationary traffic surveillance cameras (for example, refer
to the work of Daileyet al. [16, 3]). Yet, we have not de-
veloped a camera calibration tool for our purposes, mainly
due to the lack of time needed for a full-featured embed-
ded implementation. Anyway, the information needed for
the calculation of a simple plane-to-plane mapping, called a
Homography, can easily be derived from the knowledge of
road geometry and road painting measurements. Hence we
preferred this solution over the camera calibration method.

At least four non-colinear point correspondences are
needed to guarantee that the system of equations to be
solved for the transformation between image-plane and
real-world-plane is well-posed. A good explanation of the
algorithm can be found in the book of Hartley and Zisser-
man [8]. Naturally, neither most objects are flat at all, nor
the real-world ground is perfectly planar, thereby a lot of
errors are introduced. Nevertheless, this solution performs
sufficiently well for the purposes already mentioned above.

As the homography only has to be calculated once at
startup of the system, it is done usingfloating pointvari-
ables. The mapping of a single image point into real world
coordinates reduces to a single matrix-vector calculation.

4.2. Generic Object Detection Algorithms

An important group of algorithms in computer vision is
dealing with the detection of objects or humans, commonly
known as thegeneric object detection task. As this task can
be arbitrarily complicated, depending on the appearance of
the objects to detect and the environment they are situated
in, the algorithms used can be arbitrarily complex as well.

We discuss two algorithms for generic object detection
in the following and list their advantages and shortcomings.

4.2.1 Background Modelling and Subtraction

Background modelling and subtraction is a very popular ap-
proach for motion detection and is our first algorithm to be
described. TheApproximated Median Filter, originally pro-
posed by McFarlane and Schofield, is used for background
modelling [13].



For each pixelp[x, y], the median of a sequence of values
is approximated by consecutively incrementing and decre-
menting the estimatorm[x, y]. The estimator is decre-
mented by one, if the input pixel value is smaller than the
estimate, and incremented by one, if it is greater,

mc[x, y] =
{

mc[x, y]− 1 if vc[x, y] < mc[x, y]
mc[x, y] + 1 if vc[x, y] > mc[x, y]

(1)
with c ∈ {R,G,B}. Because we are using 24-bit RGB-
images, we apply the background modelling approach to all
three color channels and threshold over the sum of the three
differences to create our difference image. This makes the
model a little more robust, introducing only little additional
cost. Image subtraction of the background model from a
new frame and thresholding over the difference gives a bi-
nary image with white blobs representing areas of motion
in the actual frame.

diffimage[x, y] =
{

1 if sum > Threshold
0 else

(2)

sum=
∑

c∈{R,G,B}

abs(vc[x, y]−mc[x, y]) (3)

After morphological opening and closing operations, ap-
plied on the difference image, it is passed to the second
module, where the connected white blobs are labeled and
their dimensions and positions are recorded using a stan-
dard region labelling algorithm [22].

The approximated median filter is very well suited for
implementation on DSPs, because its computational costs
are relatively low and it simultaneously provides stunningly
good performance (an overview of various algorithms for
background modelling and their properties is given in the
work of Cheung and Kamath [4]). Furthermore an imple-
mentation does not require any floating point operations and
only a moderate amount of memory resources.

The described algorithm does perform reasonably well,
even under inclement weather conditions like heavy rain or
snow. The majority of the detected regions are more or less
correctly corresponding to real objects. Nevertheless, errors
occur due to shadows or occlusions, and the algorithm is
sensitive to camera motion. Another drawback is, that that
objects, which become stationary, tend to ”fade” into the
background model.

Nevertheless, for most scenarios this approach is suffi-
cient for extracting regions of interest where moving ob-
jects are located. This approach is also used to collect train-
ing examples for the algorithm described in the subsequent
section4.2.2.

4.2.2 Viola-Jones Detector

This popular detection algorithm is mainly based on the Ad-
aBoost approach presented by Viola and Jones [24]. Al-
though, meanwhile a large number of new boosting algo-
rithms has emerged, most of them are slight variations of the
classical Viola-Jones approach such as WaldBoost [21] or
WeightBoost [9], for embedded applications still the origi-
nal approach has turned out to be the best choice.

Viola and Jones achieved real-time performance as well
as high accuracy by using a boosted cascade of weak clas-
sifiers or perceptrons which enabled early rejection of sim-
ple samples and by representing images as summed tables
or integral images which allowed to calculate simple lin-
ear Haar-features in constant time. Additionally, the entire
classifier can be implemented on a platform with only fixed
point numbers. After a new stage has been built, all negative
samples are filtered and only wrong classified samples are
kept which leads to increasing classifier stage complexity.
The tedious training process can be performed on a standard
PC and the trained classifier is loaded onto the embedded
platform where the image is scanned with a search window
in different scales and locations.

In our current implementation, the integral images are
calculated inintegerunits and thresholding inside the weak
classifiers is done usingfloats. On this account, the number
of weak classifiers and the shape of the cascades has sig-
nificant influence to system performance on our embedded
platform. Thus, it is crucial to minimize the number of clas-
sifiers simultaneously keeping a good level of performance.

We acchieved superior system accuracy over the discrete
boosting approach by using real-valued or confidence-rated
predictions as proposed by Shapire and Singer [18]. In prac-
tice, this has the advantage that during training the system
converges faster than discrete boosting if the training pro-
cess is stopped after a few iterations. Moreover, we reduced
the overall number of weak classifiers in the long term,
while there is no large accuracy difference to the discrete
approach of Viola and Jones.

We, additionally, applied the ideas of Sochman and
Matas [20] to cascade building. In Viola and Jones’ cas-
cade training process all features are thrown away after a
stage has been built which totally ignores the additional in-
formation on confidence provided by the stage output. Each
new stage is trained from scratch and independently from its
predecessor. This has turned out to be sometimes a waste of
already well performing features.

In contrast, Sochman and Matas proposed a cascade
method where previous-stage weak classifiers propagate
from one stage into the next. This works at zero evalu-
ation cost because the propagated classifiers have already
been evaluated in the foregoing stage but leads to stronger
stages due to the additional information. We applied this
inter-stage feature propagation method to RealBoost which



led to significant fewer weak classifers and, hence, faster
detectors while keeping almost the same accuracy as in the
original approach.

Furthermore, we achieved a significant reduction of
weak classifiers by carefully selecting the negative training
samples. Hence, we randomly selected background traffic
scences rather than arbitrary examples. The training of the
detector still has to be done on a usual desktop computer,
because of the memory resources needed by the training al-
gorithm. We use the approach described in the previous
section4.2.1to accelerate the process of acquiring positive
training samples, and we use a method similar to the one
presented in [1].

4.3. Post-processing Methods

The detector described in the previous section4.2.2, as
well as many other object detection algorithms, uses ex-
haustive search techniques. Thus, a subwindow scans the
entire image in different scales and locations and evaluates
its content. This search method, however, owing to the in-
variance of the classifier to small translations of an object,
has the side-effect that the same object is detected more
than once. These multiple detections then have to be post-
processed to form up one single correct detection.

Generally, there exist various simple approaches to solve
this problem, most of them simply combine overlapping
bounding boxes as in [24] and [15], where the latter one
uses the number of detections in a small environment as a
measure for confidence.

If detections are able to deliver additional information
such as values or margins for safety or probability, more
intelligent algorithms can be used. One such method is the
non-maximum suppressionwhere all detections are sorted
by their safety values or filter responses in descending order.
If two or more boxes overlap to a certain extent, the weaker
detection is eliminated.

Additionally, when having confidence values, it is also
possible to calculate aclassifier activation mapwhere all
positive results are weighted by their confidence responses.
While this matrix can then be analyzed in various ways we
use a variant of the MeanShift algorithm [6], the CAMShift
as proposed by Bradski [2] originally used for face tracking.
An application to post-processing can be found in [7].

The Mean Shift algorithm requires that all acquired
detection responses are represented as probability density
function estimations which is calculated as

f̂k(x) =
n∑

i=k

Yk(Xi)Kk

(x−Xi

Wk

)
, (4)

where{Xi}1···n are the image locations where classifica-
tion has been performed andKk(·) is the two-dimensional
Gaussiankernel with a size equivalent to the object size

Wk. The Mean Shift then climbs the gradients of this dis-
tribution to find dominant clusters (modes or peaks) which
is also known as mode seeking.

Unlike to the fixed window size of the Mean Shift, the
CAMShift (ContinuouslyAdaptiveMeanShift) adaptively
adjusts the window size in order to find proper modes. The
starting points of the algorithm are the local maxima de-
termined from the probability distribution function D. In
each CAMShift iteration the initially very small window
size (e.g. 20% of the original detection window size) and/or
the position of the current window are adjusted. The local
covariance within the window is estimated by computing
local statistical moments of the zeroth- (M00), first- (M10,
M01) and second-order (M20, M02, M22) as shown in equa-
tion 5 which can be performed very efficiently by repre-
senting these modes asintegral images[7]. The width and
height of the new window size are represented as elliptic es-
timations of the underlying probability distribution. Equa-
tions6 and7 show how the new adapted size is calculated.

M00 =
∑

x

∑
y D(x, y)

M01 =
∑

x

∑
y y ·D(x, y)

M10 =
∑

x

∑
y x ·D(x, y)

M02 =
∑

x

∑
y y2 ·D(x, y)

M20 =
∑

x

∑
y x2 ·D(x, y)

M22 =
∑

x

∑
y x · y ·D(x, y)

(5)

a = M20
M00

− x′2 b = 2
(

M11
M00

− x′y′
)

c = M02
M00

− y′2
(6)

width =
√

(a+c)+
√

b2+(a−c2)

2

height =
√

(a+c)-
√

b2+(a−c2)

2

(7)

4.4. Tracking

Tracking algorithms are used to bring loose observa-
tions, taken from single frames, together into connected se-
quences - in our case, this means, following an object in
motion. For that purpose, the well-known Kalman Filter is
a good choice ([10]). The movement of an object inx andy
direction is modelled separately by a second order equation
of motion. A list of fixed length is used to store the state
information for a whole tracking sequence, from which ve-
hicle speed information is deduced later on.

At the moment we have only an implementation using
floating pointvariables, therefore only a limited number of
objects can be tracked simultaneously. As the algorithm in-
volves a lot of matrix multiplications and matrix inversions,
tracking a lot of objects gets computationally expensive. We
leave a portation of our implementation to a fixed-point ver-
sion as an open issue.



5. Experiments

Two applications are presented which demonstrate the
power of our approach, both from the area of traffic surveil-
lance. Especially, we try to point out the real-time capa-
bilities of our system and the universal applicability of the
hardware platform in combination with selected algorithms.
Furthermore, we should mention, that we have put abso-
lutely no effort into optimization of our algorithms. The
code used for the experiments mostly conforms to ANSI
C standard without any special usage of intrinsics or linear
assembly code. Thus, the time measurements given could
definitely be improved by introducing these types of code
optimization techniques.

5.1. Single Module Time Consumption

In table5 we list the average time consumption of our
module implementations using special parameters. We ap-
ply our algorithms on a full CIF frame and a special subre-
gion of the frame, depending on the application.

For the background modelling and subtraction module,
we use a threshold of 45, which gives good results for our
scenarios. The time for processing is constant because every
pixel has to be processed twice (update and subtraction),
irrespective of its content.

The region labelling process does not require any param-
eters to be set. The labelling process passes the image a first
time maintaining a list of blob correspondences. Because
this list has to be taken into account in a second pass, the
length of this list slightly influences the average processing
time of the algorithm.

The Viola-Jones detector used for vehicle detection uses
only 27 features and 7 stages. To speed up the search pro-
cess, the exhaustive search is limited to three scales using
the scene geometry information.

For license plate detection, the search space is narrowed
to 5 scales, while the detection algorithm used only requires
37 features in 8 stages.

Due to the simplicity of the non-maximum suppres-
sion, the number of detections to be processed does only
slightly influence its time consumption. On average, the
time needed for post-processing is negligible.

The computational complexity of the implementation of
the CamShift algorithm does not make it suitable for real-
time processing. Because the number of iterations neces-
sary for convergence are not known beforehand, the aver-
age time needed for processing is quite too long. Anyway,
using an optimized version of this algorithm is a clear al-
ternative to using the non-maximum suppression algorithm,
especially for complex scenarios, as shown in the computer
vision literature [7].

As can easily be seen from the last two rows of table
5, the time consumption of the a single Kalman tracker is

Figure 3. A sample frame taken from a 30 minutes demonstration
video and the results of both algorithms. The simple algorithm
is not capable of detecting both vehicles separately (left). The
enhanced algorithm can easily overcome this problem and is able
to correctly separate the vehicle detections (right).

Figure 4. A frame taken from a different video stream and the re-
sults of both algorithms. The simple system simply fails because
objects are “fading” into the background model (left). The up-
graded system can still detect all objects correctly because the al-
gorithm simply scans over the whole image if no region of interest
has been found by the previous module.

significant and should be further improved to make tracking
of multiple objects feasible. In contrast, the time needed
for mapping an image point to a real-world point using a
homography is negligible.

5.2. Simple Vehicle Detection System

For our first system, we use the background modelling
module described in section4.2.1and the region labelling
algorithm for object detection. Referring to table5, the av-
erage time needed for the algorithm applied on a region of
interest is calculated to about2.27ms.

As can easily be seen in Figure3 on the left, this ap-
proach is not capable of detecting two vehicles separately if
shadows are merging them into a single blob in the differ-
ence image. The performance of the system is also unsatis-
factory if objects have to stop for some reason, for example
due to a jamming situation (see Figure4).

Even if there are a lot of problems, we can still use this
setup to gather images for the training stage of our Viola-
Jones detector. We carefully select good detections and add
them to our positive training set.



Module
Full Frame 352x288 Region Of Interest 192x220

avg. time [ms] std. dev. avg. time [ms] std. dev.
Background Modelling and Subtraction 1.768 0.0 0.75 0.0

Region Labelling 2.7 0.87 1.52 0.68
Viola-Jones Detector (5 scales) (Vehicles) 92.38 10.58 44.14 5.67

Viola-Jones Detector (3 scales) (License Plates) 141.62 3.27 - -
Non-Maximum Suppression (max 150 detections) 0.18 0.16 0.034 0.041

CamShift (max 40 iterations) 208.53 222.43 139.7 93.86

Single Execution
KalmanTracker (Estimate/Update) 0.346 0.01

Homography 0.008 0.0

Table 1. Average time taken to execute each module. For simplicity, we have listed all time measurements for all experiments in this single
table.

5.3. Enhanced Vehicle Detection System

To overcome the shortcomings of the system described
in the previous section, we introduce the Viola-Jones detec-
tor module, already explained in section4.2.2.

The simple system is kept as it is and is now used to
pre-select regions of interest in the actual frame. On all re-
gions found, theViola-Jones detectoris applied to verify
the presence or absence of a vehicle. Alternatively, if there
were no blobs found, the detector is applied on the whole
frame to correct for errors, which have occurred due to the
shortcomings of the background modelling approach. To
correct for multiple overlapping detections of the same ve-
hicle, theNon-maximum suppressionalgorithm is applied
(section4.3).

In Figures3and4, the results of our extension are shown.
While the problems of our previous approach can be over-
come using this new module, this comes at additional com-
putational costs. The worst case time consumption now
rises to about46.6ms, if the detector is applied to the whole
region of interest and non-maximum suppression is used as
post-processing method. Note that this is only the case if
the detection process by the overlying simple module has
failed. The time consumption for verification of a blob is
negligible, thus the average time needed for processing a
sequence of frames is much less than40ms per frame.

5.4. Complete Framework

For our final system, we additionally integrate the
Kalman tracker module (section4.4) and the homography
module (section4.1) into our framework. After the detec-
tion algorithm has been applied, for all verified vehicles a
single tracker is initialized to record its movements in the
following frames. Using the homography module, we can
estimate the velocity of the detected vehicles and the lane
used. Therefore we simply calculate the spatial distance be-
tween the start and the end of the tracking sequence in the

Figure 5. Two frames taken from a 30 minutes demonstration
video and the results of our algorithm. As can easily be seen, in
both frames, both vehicles were successfully tracked. The corners
of the yellow rectangle represent the four reference points used for
homography calculation.

real world and divide it by the temporal period needed to
cover this distance.

Figure5 shows the tracking results on two frames, taken
from a 30 minutes demonstration video. The estimated
speed of the vehicles is also noted. Unfortunately there are
no reference measurements available at this site. Anyway,
reference measurements at another site using laser speed
sensors have shown that our approach delivers plausible val-
ues, and that only a constant offset error might occur due to
erroneous reference point measurements in the homography
calculation.

5.5. Licence Plate Detection

To justify the application of the Viola-Jones detector, we
apply it on the very popular task of License Plate Detection.
Because we want to detect a subregion of an object in mo-
tion, a simple motion detection algorithm is not sufficient
to accomplish this task. Thus the usage of the Viola-Jones
detector is justified. Its application is shown in searching
licence plates on cars in a urban traffic surveillance video.
Our intention is to further perform OCR (Optical Charac-



Figure 6. Two frames taken from a 15 minutes demonstration
video and the results our algorithm. Note, that the region inside
the bounding box should now be passed to an OCR module for
further processing.

#plates #plates detected dr #fp

100 96 96% 28

Table 2. Overall detection results for 100 license plates in a 15
minute demonstration video.

ter Recognition) on the license plates detected, thus there
are some minimum requirements for the size of the detec-
tions. The description of the algorithms used for OCR is out
of this paper’s scope, but thereby this experimental setup is
motivated.

The detection algorithm was applied to a full 352x288
frame using a classifier already explained in5.1. Due to
the high accuracy of the detector, a simple non-maximum
suppression algorithm (section4.3) served sufficiently for
post-processing. Referring to the time consumption table
5, the average time for processing a single frame is about
140ms. The detection results are listed in table5.5.

Because the scale search process was not perfectly tuned
to the experimental setup, the time taken by the detection
algorithm is much longer than in the previous example. Fur-
thermore, the additional amount of features used intensifies
this effect. Using a loopback setup of tracking and detec-
tion, the amount of time necessary could be reduced signif-
icantly. Up to this time, this was left for implementation in
a complete license plate recognition framework.

6. Conclusion and Future Work

In this work we presented an embedded platform capa-
ble of performing high-level computer vision tasks such as
vehicle and license plate detection in real-time. We have
shown that it is possible to build a flexible and robust em-
bedded vision system to be applied on a wide area of appli-
cations by using a modular and flexible software design for
embedded devices.

In future work, we will concentrate on further optimiz-
ing both the hardware and software architecture. We believe
that it is possible to additional gain performance and accu-

racy by especially concentrate on further algorithm quality
improvement and a better mapping to the underlying DSP
architecture. For that purpose we will introduce the usage
of both intrinsics and linear assembly code. We believe that
this might further speed up our algorithms by up to a factor
of 20 for some parts of our code.

We are looking forward to integrate a traffic jam detec-
tion module into our framework to add the functionality of
traffic jam detection and operator alertion. Additionally to
traffic surveillance, we will generalize our approach to other
fields of out-door object detection tasks, such as pedestrian
detection on public places.

References

[1] Y. Abramson and Y. Freund. SEVILLE, Semi-automatic
Visual Learning. InInternational Conference on Pattern
Recognition, 2005. 5

[2] G. R. Bradski. Computer Vision Face Tracking For Use In
Perceptual User Interface. InIntel Technology Journal, pages
123–140, 1998.5

[3] F. W. Cathey and D. J. Dailey. A novel technique to dy-
namically measure vehicle speed using uncalibrated road-
way cameras. InIEEE Intelligent Vehicles Symposium, pages
777–782, 2005.3

[4] S. S. Cheung and C. Kamath. Robust Techniques for Back-
ground Subtraction in Urban Traffic Video.Video Commu-
nications and Image Processing, SPIE Electronic Imaging,
San Jose, January 2004.4

[5] M.-Y. Chiu, R. Depommier, and T. Spindler. An Embedded
Real-Time Vision System For 24-Hour Indoor/Outdoor Car
Counting Applications. InInternational Conference on Pat-
tern Recognition, pages 338–341, 2004.2

[6] D. Comaniciou and P. Meer. Mean Shift Analysis and Ap-
plications. InInternational Conference on Computer Vision
and Pattern Recognition, pages 1194–1233, 1999.5

[7] H. Grabner, C. Belezani, and H. Bischof. Improving Ad-
aboost detection rate by Wobble and Mean Shift. InPro-
ceedings of Computer Vision Winter Workshop,, 2005. 5,
6

[8] R. Hartley and A. Zisserman.Multiple View Geometry in
Computer Vision. Cambridge University Press, 2000.3

[9] R. Jin, Y. Liu, L. Si, J. Carbonell, and A. G. Hauptmann.
A New Boosting Algorithm Using Input-dependent Regu-
larizer. In International Conference on Machine Learning,
2003. 4

[10] R. Kalman. A New Approach to Linear Filtering and Predic-
tion Problems.Transaction of the ASME–Journal of Basic
Engineering, pages 35–45, 1960.5

[11] J. W. MacLean. An Evaluation of the Suitability of FPGAs
for Embedded Vision Systems. InEmbedded Computer Vi-
sion Workshop, International Conference on Computer Vi-
sion and Pattern Recognition, pages 131–138, 2005.2

[12] B. Mathew, A. Davis, and M. Parker. A Low Power Architec-
ture for Embedded Perception. InInternational Conference
on Compilers, Architecture and Synthesis for Embedded Sys-
tems, pages 46–56, 2004.2



[13] N. McFarlane and C. Schofield. Segmentation and Track-
ing of Piglets in Images.Machine Vision and Applications,
8(3):187–193, 1995.3

[14] A. Rowe, C. Rosenberg, and I. Nourbakhsh. A Second Gen-
eration Low Cost Embedded Color Vision System. InEm-
bedded Computer Vision Workshop, International Confer-
ence on Computer Vision and Pattern Recognition, 2005. 2

[15] H. Rowley, S. Baluja, and T. Kanade. Neural network-based
face detection. InIEEE Transactions on Pattern Recognition
and Machine Intelligence, pages 23–38, 1998.5

[16] T. Schoepflin and D. Dailey. Dynamic camera calibration of
roadside traffic management cameras for vehicle speed es-
timation. IEEE Transactions on Intelligent Transportation
Systems, 4(2):90–98, June 2003.3

[17] M. Sen, I. Corretjer, F. H. S. Saha, J. Schlessman, S. S.
Bhattacharyya, and W. Wolf. Computer Vision on FPGAs:
Design Methodology and its Application to Gesture Recog-
nition. In Embedded Computer Vision Workshop, Interna-
tional Conference on Computer Vision and Pattern Recogni-
tion, pages 133–141, 2005.2

[18] R. E. Shapire and Y. Singer. Improved Boosting Algorithms
Using Confidence Rated Predictions. InMachine Learning,
pages 297–336, 1999.4

[19] A. Shashua, Y. Gdalyahu, and G. Hayun. Pedestrian Detec-
tion for Driving Assistence Systems: Single-Frame Classifi-
cation and System Level Performance. InIEEE Intelligent
Vehicles Symposium, pages 1–6, 2004.2

[20] J. Sochman and J. Matas. Inter-stage Feature Propagation In
Cascade Building With AdaBoost. InInternational Confer-
ence on Pattern Recognition, pages 236–239, 2004.4

[21] J. Sochman and J. Matas. WaldBoost - Learning For Time
Constrained Sequential Detection. InInternational Confer-
ence on Pattern Recognition, pages 150–156, 2005.4

[22] M. Sonka, V. Hlavac, and R. Boyle.Image Processing, Anal-
ysis, and Machine Vision, Second Edition. PWS Publishing,
1998. 4

[23] Moving Picture Experts Group .
http://www.chiariglione.org/mpeg/index.htm.3

[24] P. A. Viola and M. J. Jones. Rapid Object Detection using a
Boosted Cascade of Simple Features. InInternational Con-
ference on Computer Vision and Pattern Recognition, pages
511–518, 2001.4, 5


